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Diffusion approximation is an important approximation used to model a nuclear 

reactor core with a quite good accuracy and less computational cost.                    

This approximation has been used widely around the globe for various kinds of 

nuclear reactors. This diffusion approximation is applied in a two-step method,         

a method combining a high fidelity transport code and low fidelity diffusion code. 

Meanwhile, innovations in the nuclear core model continue to make the nuclear 

reactor core safer, more robust, and smaller. The trend of creating smaller and more 

modular reactor core is emerging in the last ten years. These innovations will affect 

the core modeling system. Consequently, for smaller reactors, it is important to 

evaluate the capability of diffusion approximation if one wants to use a 

computationally cheaper method to model the reactor core. In this paper, neutron 

diffusion calculation for 160 MWth integral pressurized water reactor (IPWR) core 

was conducted using the PARCS nodal diffusion code employing the few-group 

spatially homogenized cross-sections generated by the Serpent Monte Carlo code. 

Due to its capability to model any reactor geometry in the high-resolution 

calculation, the results from Serpent were also used as a reference. Two important 

parameters are compared between PARCS and Serpent: effective neutron 

multiplication factor and core power distribution. For the full IPWR core model,      

a discrepancy of 564 pcm between PARCS and Serpent keff was observed, while the 

radial power distribution had a maximum error of 4.71 %. It can be said, to some 

extent, that the diffusion approximation can be applied to IPWR core analysis. 

However, further improvement is indeed required if one wants more accurate results 

with low computational costs. 
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INTRODUCTION 

In nuclear reactor physics, the behavior of the 

whole reactor is closely related to the neutron 
movement inside the reactor core that drives the 

fission reaction in the fuel. Since neutrons are 
neutral particles, they will travel in straight lines 

without any deviation, except when they collide and 
interact with certain matters. Having this 

characteristic, the neutronic phenomenon that occurs 
in the nuclear reactor can be exactly explained with 
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neutron transport theory that governs how neutrons 
are transported through various media. 

Two different types of methods are       

usually followed to solve for neutron flux in          
the transport equation: deterministic and stochastic. 

The deterministic method uses an approximation to 
discretize all independent variables and numerically 

solve the Boltzmann transport equation. On the other 
hand, the stochastic solutions, usually called Monte 

Carlo methods, use brute force to statistically model 
neutron behaviors in the reactor instead of solving 

the transport equation [1].  
Both methods, especially the Monte Carlo 

method, require an extensive amount of 
computational resources to simulate neutron 
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behaviors in typical nuclear reactors. As a result, 
several researchers use further approaches using 

diffusion approximations to simplify the problems, 
especially ones that involve time-dependent  

transient calculation. Approaches to combine both 
deterministic and stochastic methods are developed 

to solve the computational challenges of criticality 

calculation. The resulting method is called the     
two-step method. As the name suggests, these 

methods combine the stochastic Monte Carlo codes, 
which are used for generating homogenized cross-

sections and neutron flux distribution, and the 
deterministic codes, which are then used for 

criticality safety calculation for steady-state or even 
transient conditions using data generated by the 

Monte Carlo codes. 
The recent development of nuclear 

technology, especially in the last decades, shows 
several trends toward smaller-size reactors called 
small modular reactors (SMRs) [2,3]. The smaller 
economic investment and faster construction time of 
these reactors make them interesting options soon.  

This work has a purpose to test the 
performance of the diffusion method to use in the 
neutronic analysis of the 160 MWth IPWR (integral 
pressurized water reactor). This reactor is used as a 
reference case because of its applicability and the 
capability to use natural uranium in the MOX fuel-
making the IPWR an interesting choice for future 
advanced small-sized nuclear power plant [4]. 
Hence, finding an efficient method to analyze this 
reactor is important before one decides to build it in 
the future. 

 
 

THEORY 

In nuclear reactor physics, the behavior of the 

whole reactor is closely related to the neutron 
movement inside the reactor core that drives the 

fission reaction in the fuel. Since neutrons are 
neutral particles, they will travel in straight lines 

without any deviation, except when they collide and 
interact with certain matters. Having this 

characteristic, the neutronic phenomenon that occurs 

in the nuclear reactor can be exactly explained with 
neutron transport theory that governs how neutrons 

are transported through various media. 
The neutron transport theory is represented in 

an equation called the Boltzmann transport equation. 
The equation describes the neutron balance in a 

system: the rate of neutron change in time is equal to 
the rate of neutron gain subtracted by the rate of 

neutron loss. The neutron gain in the reactor can be 
from the fission production (prompt or delayed), 

scattered neutrons that enter the system, and external 
sources. The neutron loss in the system can be 

caused by the collision due to an interaction with 
matters and neutron leakage out of the system. 

Even though the transport equation seems to 
be quite straightforward, the process to solve it is 
unfortunately not easy at all. Especially for a large, 
time-dependent model, the complexity makes it 
almost impossible to model in the high-resolution 
neutron transports. 

To further explain this, suppose we have a 
time-dependent neutron transport equation written   
in Eq. (1). 

 

1

𝑣

𝜕𝜓(𝒙, �̂�, 𝐸, 𝑡)

𝜕𝑡
+ �̂� ⋅ ∇𝜓(𝒙, �̂�, 𝐸, 𝑡)

+ Σ𝑡(𝒙, 𝐸)𝜓(𝒙, �̂�, 𝐸, 𝑡)

= ∫ ∫ Σ𝑠(𝒙, �̂�′ ⋅ �̂�, 𝐸′

4𝜋

∞

0

→ 𝐸) 𝜓(𝒙, �̂�′, 𝐸′, 𝑡)𝑑Ω′𝑑𝐸′

+
𝜒(𝐸)

4𝜋
∫ ∫ 𝜈Σ𝑓(𝒙, 𝐸′

4𝜋

∞

0

→ 𝐸) 𝜓(𝒙, �̂�′, 𝐸′, 𝑡)𝑑Ω′𝑑𝐸′ 

(1) 

 

Where: 
x = space vector (x, y, z)  
�̂� = directional vector space vector (, ) 
E = energy  
t = time  
𝜓 = neutron angular flux  
x = macroscopic cross-sections of reaction x 

 (total, scattering, or fission) 
v = neutron speed 
 = fission spectrum  
𝜈 = average neutron produced from fission  
 

Equation (1) can then be deterministically 

solved by applying several approximations.          

The most common approximation is the P1 

approximation which then leads to diffusion 

approximation. The final equation that is solved in 

the diffusion equation is laid out in Eq. (2). 

 

−∇ ⋅ 𝐷∇𝜙 + Σ𝑎𝜙 =
1

𝑘
𝜈Σ𝑓𝜙 (2) 

 

Equation (2) is the k-eigenvalue diffusion 

equation for the steady-state condition.                 

The fundamental assumption used in the diffusion 

equation that the angular flux is a linear function of 

�̂� will only be valid if the spatial derivatives of the 

scalar flux are negligible. This is true for an 

optically thick system where scattering reaction is 

dominant. For this reason, the diffusion equation is 

pretty accurate to model a typical large commercial 

nuclear reactor core where the spatial gradients are 

not prominent due to its large size and the low 

number of absorbing media. 
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Fig. 1. Two-step method.

In the common practice of nuclear reactor 

core simulation, a nodal approach is used, i.e., 

modeling the reactor in assembly-wise or pin-wise 

node, then coupling all the nodes together to    

obtain full core neutronic behavior of the reactor [4]. 

Thus, the diffusion equation used in this approach     

is given in Eq. (3). 
 

−𝐷𝑖,𝑔∇2𝜙𝑖,𝑔 + Σ𝑟,𝑖,𝑔𝜙𝑖,𝑔

=
𝜒𝑖,𝑔

𝑘𝑒𝑓𝑓
∑ 𝜈Σ𝑓,𝑖,𝑔′𝜙𝑖,𝑔′

𝑔′

+ ∑ Σ𝑠,𝑖,𝑔′→𝑔𝜙𝑖,𝑔′

𝑔′

 

(3) 

 

In (3), i is the node index where the diffusion 

equation is solved. Since every individual node        

is modeled homogenously, the nodal few-group 

cross-sections are obtained beforehand from the 

lattice physics calculation, either deterministic or 

Monte Carlo.  

The spatial homogenization and energy group 

condensation to obtain the nodal cross-sections     

are usually done by preserving the related reaction 

rates from the lattice physics calculation used.      

The equation for this is written as in Eq. (4). 
 

Σ𝑔
ℎ𝑜𝑚 = 〈Σ𝑔〉𝑛𝑜𝑑𝑒

=
∫ ∫ Σ(𝑥, 𝐸)𝜙(𝒙, 𝐸) 𝑑𝐸 𝑑𝑉

𝐸𝑔−1

𝐸𝑔𝑅

∫ ∫ 𝜙(𝒙, 𝐸) 𝑑𝐸 𝑑𝑉
𝐸𝑔−1

𝐸𝑔𝑅

            (4) 

 

If the homogenous group constants are 

generated using Monte Carlo methods, the reaction 

rates and fluxes can be tallied along with the 

calculation. The tally is conducted for every     

spatial node and energy group bin to obtain the 

spatially homogenous, group-condensed cross-

section data. 

Combining the lattice transport calculation to 

obtain the spatially homogeneous, group-condensed 

cross-section data and nodal diffusion to obtain the 

reactor core calculation has been widely performed 

in light water reactor core analysis. This procedure is 

called the two-step method. The two-step procedure 

consists of an assembly transport calculation with a 

lattice physics code, and a reactor core calculation 

with a nodal diffusion code. The diagram in Fig. 1 

shows the general process of how the two-step 

method calculation is conducted. The few-group 

constants, including diffusion coefficients, are 

generated from the assembly calculation results.  

Once the assembly calculation is done,        

the cross-sections are spatially homogenized, and a 

critical spectrum calculation is performed in order to 

take into account the neutron leakages of the lattice. 

The diffusion coefficient is also generated through 

the critical spectrum calculation [5]. Using the     

two-step method, the computational cost of the core 

calculation can be reduced while maintaining the 

accuracy of the calculation. 
 

 

METHODOLOGY 

This research is conducted based on the 

NuScale integral PWR model. Some simplification 

was introduced, mainly in the material definition. 

The material and geometry data of IPWR is 

presented in Table 1 
 

 

 

 

 

 

 

 
 

 

Fig. 2. Procedures employed in this research. 

 
The procedure of this research is illustrated in 

Fig. 2. The Serpent Monte Carlo code is used to 
generate nodal cross-sections for PARCS nodal 
diffusion code and to produce reference results for 
this work [6,7]. The capability of Serpent to model 
every detailed part of nuclear reactor design in high 
resolution and accuracy makes its output suitable     
as a reference result when experimental data is      
not available.  
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The Serpent Monte Carlo Code, developed at 

VTT Technical Research Centre of Finland, uses 

Monte Carlo methods to perform the lattice physics 

calculation in the reactor and, furthermore, to obtain 

homogenized cross-sections to use in nodal diffusion 

calculations [8-10]. Unlike deterministic methods, 

Monte Carlo methods do not solve the neutron 

transport equation; rather, they simulate individual 

particles (neutrons) and record several aspects of 

their average behavior to obtain results intended by 

the users. The accuracy of the Monte Carlo 

calculation depends highly on the number of particle 

histories included in the calculation, causing this 

method to be very cost-extensive in terms of 

computation resources if one wants to obtain an 

accurate result. Nevertheless, Monte Carlo methods 

are reliable for solving arbitrary and complicated 

three-dimensional problems because there are no 

averaging approximations required in space, energy, 

and time. 

The main job of Serpent is to generate the 

nodal cross-sections and nodal flux distributions that 

are then used by PARCS. PARCS uses the few-

group homogenized nodal cross-sections generated 

by Serpent and converted by GenPMAXS to 

perform nodal diffusion calculation on the IPWR 

model [11]. The nodal calculation is  utilized using 

the nodal expansion method (NEM) for the 

multigroup diffusion equation. The calculation is 

further accelerated using the coarse-mesh finite 

difference (CMFD) method in PARCS [12].  

The data of material and geometry used in the 

Serpent for Monte Carlo calculation is described in 

Table 1 [13,14]. 

The fuel assembly of the IPWR model is 

described in Fig. 3 and the core geometry axial and 

radial cross-sections are described in Figs. 4 and 5. 
 

 

Fig. 3. Top view of Fuel Assembly in cm. 

Table 1. Material and geometry data of IPWR. 

Properties Unit Value 

Core 

Core radius cm 82.5 

Number of assemblies - 37 

Thermal power MW 160 

Fuel Assembly (FA) 

Fuel type - PuO2-UO2 
235U enrichment - 0.72 % 

Pu-U Ratio - 12 % 

Assembly model - 
Square Array 

17×17 pins 

Number of fuel rods - 264 

Structure material - SS 304L 

FA pitch cm 21.50364 

Coolant - H2O 

Fuel Rod 

Cladding outer diameter cm 0.94996 

Gap thickness cm 0.01651 

Fuel diameter cm 0.81153 

Gap material - Helium 

Cladding material - Zircalloy-4 

Fuel rod pitch cm 1.25984 

Fuel rod height cm 200 

Reflector 

Reflector material - SS 304L 

Axial reflector thickness cm 12.5 

Radial reflector thickness cm 14 

Thermal-hydraulic Parameters 

Pressure psia 1450 

Fuel pin average temperature K 772.04 

Gap average temperature K 739.21 

Moderator average 

temperature 
K 645.57 

Cladding average temperature K 557.04 

Reflector average temperature K 557.04 

 

 
 

Fig. 4. Radial core geometry cross-section generated by Serpent. 

 

IPWR core modeling is done in multiple 

stages, starting from 2D basic assemblies.         

Control Rod Fuel Pin Guide Tube 

Fuel Assembly 

Top View 
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Then, the modeling is continued into a 3D single 

assembly, 2D color set, and final modeling that 

includes all the features in the full core model. In 

this case, Serpent uses eight neutron groups defined 

using a predefined neutron group (CASMO eight 

neutron groups) that is included in Serpent. The 

group structure defined for the group constant 

generation is tabulated in Table 2. By using neutron 

populations of 1,000,000 it is expected that standard 

deviations are less than 10 pcm. For full core 

calculation, the boundary condition that is applied to 

the model is a vacuum boundary condition. For other 

models, the boundary condition used is reflective. 
 

 
 

Fig. 5. Axial core geometry cross-section generated by Serpent. 

 
Table 2. Group structure for group constant generation. 

 

Group Energy (MeV) 

0 1.00×101 

1 8.21×10-1 

2 5.53×10-3 

3 4.00×10-6 

4 6.25×10-7 

5 2.80×10-7 

6 1.40×10-7 

7 5.80×10-8 

8 1.00×10-11 

 

Since this research employed steady-state 

calculation in PARCS, a comparison of keff and 

power distribution in the reactor core with Serpent 

result is needed [15,16]. The capability of diffusion 

approximation to this problem can be judged by the 

number of discrepancies in both parameters 

compared to the reference solution. 
 

 

RESULTS AND DISCUSSION 

keff  comparison 

The results of the Monte Carlo calculation 

conducted in Serpent and nodal diffusion in PARCS 

for the two-dimensional (2D) single infinite 

assembly model are shown in Table 3. 

Table 3. Single infinite 2D assembly results. 
 

Serpent PARCS 
Error (pcm) 

keff STDEV (pcm) keff 

1.22088 11 1.22088 0 

 

From the result, using neutron population of 

1,000,000 and reflective boundary conditions in all 

directions, it can be observed that the Serpent model 

and PARCS model showed the same value.               

It shows that the diffusion method is perfectly 

accurate for this model. This can be understood 

since this model employed an infinite repeating 

assembly model in all directions, thus there is no 

heterogeneity between one assembly and others,   

and therefore the nodal diffusion method is exact   

for this case. 

For 3D single assembly, the calculation result 

is described in Table 4. 

 
Table 4. 3D single assembly results. 

 

Serpent PARCS 
Error (pcm) 

keff STDEV (pcm) keff 

1.20979 1.7 1.20935 44 

 

Compared to the 2D assembly model, the 3D 

single assembly model involved finite axial meshes. 

By having this definition, the axial geometry will 

cause neutron diffusion approximation to act 

differently from the 2D assembly model which has 

an infinite region in all directions due to the 

reflective boundary. The probability of neutron 

leakage in the axial direction will be considered in 

this model. From the result, it is known that there is 

a difference between the Monte Carlo stochastic 

calculation and the diffusion approximation.    

Hence, some small differences, 44 pcm, between 

PARCS and the Serpent results, can be seen.  

The result of the full core assembly model is 

presented in Table 5. 

 
Table 5. keff comparison of Serpent and PARCS. 

 

Serpent PARCS 
Error (pcm) 

keff STDEV (pcm) keff 

1.07938 2.1 1.073743 563.70 

 

The results show that the difference between 

Serpent and PARCS in a 3D full core IPWR model 

is relatively large. However, this result is expected 

because the 3D full core model is very 

heterogeneous; therefore, it will have some 

discontinuity effects, especially in the core region-

reflector boundaries.  
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Another aspect that needs to be considered is 

the size of the core itself. This full core model has a 

diameter of 165 cm and a height of 200 cm. 

Compared with any other PWR model in existence, 

this model is a small and compact model of      

PWR. This size difference will have an impact        

on how diffusion approximation is accurate to 

calculate the criticality of the core. The smaller the 

core is, the higher the neutron leakage probability 

becomes. This will result in an inaccuracy in           

the diffusion approximation. It is different from a 

typical PWR that has a diameter of 3-6 meters.     

The neutron leakage probability will be smaller     

and thus make the diffusion approximation more 

accurate.  
 

 

Power comparison 

The power comparison of this IPWR model is 

described in axial and radial positions. For axial 

results, power distribution 3D single assembly and 

full core assemblies power distribution is obtained  

to be analyzed. For radial results, the power 

distribution of the full core model is obtained to     

be analyzed.  

The 3D single assembly axial power 

distribution is described in Table 6.  
 

Table 6. 3D single assembly power comparison. 
 

Axial 

Midpoint 

(cm) 

Power (MW) 
Difference 

(%) SERPENT PARCS 

5 0.084252 0.0897387 6.51 

15 0.112999 0.1096326 2.98 

25 0.151955 0.1498528 1.38 

35 0.187704 0.1859645 0.93 

45 0.21954 0.2184002 0.52 

55 0.247197 0.2465111 0.28 

65 0.269889 0.2696486 0.09 

75 0.287394 0.2873801 0.00 

85 0.29902 0.2994894 0.16 

95 0.304678 0.3055441 0.28 

105 0.30466 0.3055441 0.29 

115 0.298338 0.2994894 0.39 

125 0.286278 0.2873801 0.38 

135 0.26857 0.2696486 0.40 

145 0.245682 0.2465111 0.34 

155 0.217788 0.2184002 0.28 

165 0.185454 0.1859645 0.28 

175 0.149455 0.1498528 0.27 

185 0.110428 0.1096326 0.72 

195 0.0862054 0.0897387 4.10 

Axially, the obtained power distribution of   

3D assembly is similar for Serpent and PARCS. The 

highest difference is located in the axial boundaries. 

This can be caused by the discontinuity of flux in the 

boundaries that become the limitations of diffusion 

approximation. In the axial midpoint at 75 cm, 

power distribution calculations by Serpent and 

PARCS show the same result. Therefore, diffusion 

approximation is accurate in the reactor mesh, but 

there is a discontinuity factor that caused the 

approximation to be inaccurate in the boundaries. 

Axial power distribution for the full core 

model is described in Table 7. 
 

Table 7. Axial power comparison. 
 

Axial 

Midpoint 

(cm) 

Power (MW) 
Difference 

(%) SERPENT PARCS 

5 2.8614 2.928 2.33 

15 4.0521 3.912 3.46 

25 5.5216 5.448 1.33 

35 6.8716 6.84 0.46 

45 8.0933 8.096 0.03 

55 9.1487 9.184 0.39 

65 10.0248 10.088 0.63 

75 10.7002 10.776 0.71 

85 11.1596 11.248 0.79 

95 11.3920 11.48 0.77 

105 11.4010 11.48 0.69 

115 11.1772 11.248 0.63 

125 10.7181 10.776 0.54 

135 10.0451 10.088 0.43 

145 9.1655 9.184 0.20 

155 8.1045 8.096 0.11 

165 6.8763 6.84 0.53 

175 5.5081 5.448 1.09 

185 4.0185 3.912 2.65 

195 2.9477 2.928 0.67 

 

From the result, it is obtained that the 

difference between Monte Carlo and nodal diffusion 

approximation of axial power distribution in the full 

core model is slightly different from the 3D single 

assembly. For the full core model, the difference in 

the boundaries is lower than the 3D single assembly. 

This is caused by the number of assemblies in the 

full core model. In the full core model, 37 fuel 

assemblies are used. This could help to reduce the 

discontinuity factor in the boundaries. Overall, the 

difference between meshes in the full core model 

has a small standard deviation due to the number of 

fuel assemblies calculated which helps to make the 

diffusion approximation more accurate. 
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The power distribution of radial full core in 

Serpent and PARCS are described in Tables 8 and 9, 

while the difference between Serpent and PARCS 

results is described in Table 10. 

 
Table 8. Full core radial power (MW) Serpent (normalized). 

 

y\x 1 2 3 4 5 6 7 

1 0 0 1.1161 3.2670 1.1172 0 0 

2 0 1.2915 4.6231 6.7569 4.6310 1.2923 0 

3 2.7484 4.9056 3.9808 9.2873 3.9841 4.8991 2.743 

4 1.6014 6.6433 9.2900 11.5551 9.3017 6.6538 1.601 

5 2.7469 4.9061 3.9864 9.2902 3.9894 4.9050 2.748 

6 0 1.2931 4.6339 6.7706 4.6391 1.2928 0 

7 0 0 1.1182 3.2718 1.1188 0 0 

 
Table 9. Full core radial power (MW) PARCS (normalized). 

 

y\x 1 2 3 4 5 6 7 

1 0 0 1.1170 3.1178 1.1170 0 0 

2 0 1.3034 4.6167 6.6716 4.6167 1.3034 0 

3 2.6357 4.8800 4.1626 9.3808 4.1626 4.8800 2.6357 

4 1.6195 6.6067 9.3989 11.5485 9.3989 6.6067 1.6195 

5 2.6357 4.8800 4.1626 9.3808 4.1626 4.8800 2.6357 

6 0 1.30335 4.6167 6.6716 4.6167 1.3034 0 

7 0 0 1.1170 3.1178 1.1170 0 0 

 
Table 10. Full core radial power difference (in percent). 

 

y\x 1 2 3 4 5 6 7 

1 0 0 0.08 4.56 0.02 0 0 

2 0 0.91 0.14 1.26 0.31 0.85 0 

3 4.10 0.52 4.57 1.01 4.48 0.39 3.91 

4 1.13 0.55 1.17 0.06 1.05 0.71 1.15 

5 4.05 0.53 4.42 0.97 4.34 0.51 4.09 

6 0 0.79 0.37 1.46 0.48 0.82 0 

7 0 0 0.11 4.71 0.16 0 0 

 

The maximum value of the difference 

between Monte Carlo and nodal diffusion 

approximation in radial full core power distribution 

is 4.71 %. This maximum discrepancy is located in 

the boundaries of the core. 
 

 

CONCLUSION 

To some extent, the diffusion approximation 

still works quite well to analyze the IPWR core 

model. Even though some discrepancies were 

observed in the results, the significantly low 

computational cost is a benefit that cannot be 

neglected in the diffusion method. Indeed, further 

improvement in the method used in this work is 

needed if one wants more accurate results for more 

reliable analysis. 
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