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 In this study, an in-house residual encoder-decoder convolutional neural network 

(RED-CNN)-based algorithm was composed and trained using images of 

cylindrical polymethyl-methacrylate (PMMA) phantom with a diameter of 26 cm 

at different simulated noise levels. The model was tested on 21 × 26 cm elliptical 

PMMA computed tomography (CT) phantom images with simulated noise to 

evaluate its denoising capability using signal to noise ratio (SNR), comparative 

peak signal-to-noise ratio (cPSNR), structural similarity (SSIM) index, modulation 

transfer function frequencies (MTF 10 %) and noise power spectra (NPS) values 

as parameters. Evaluation of a possible decrease of image quality was also 

performed by testing the model using homogenous water phantom and wire 

phantom images acquired using different mAs values. Results show that the model 

was able to consistently increase SNR, cPSNR, SSIM values, and decrease the 

integral noise power spectra (NPS). However, the noise level on either training or 

testing data affects the model’s final denoising performance. The lower noise level 

on testing data images tends to result in over-smoothed images, as indicated by the 

shift of the NPS curves. In contrast, higher simulated noise level tends to result in 

less satisfactory denoising performance, as indicated by lower SNR, cPSNR, and 

SSIM values. Meanwhile, the higher noise level on training data images tends to 

produce denoised images with reduced sharpness, as indicated by the decrease of 

the MTF 10 % values. Further studies are required to better understand the 

character of RED-CNN for CT noise suppression regarding the optimum 

parameters for best results.  

© 2022 Atom Indonesia. All rights reserved 
   

   

INTRODUCTION 

Clinical imaging practices using computed 

tomography (CT) must be performed by 

complying with the ‘as low as reasonably 

achievable’ (ALARA) principle. This is because 

excessive exposure to X-ray radiation would 

increase the probability of cell damage, which 

should be avoided [1,2]. On the other hand, too 

low X-ray exposure would result in low image 

quality, which is also undesirable as noise would 

become more prominent when the image receptor 

receives low signal. The relation between 

                                                 

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exposure and noise has made low noise images to 

be associated with the use of high exposure. While 

this resounds the ALARA and optimization 

principle, efforts can still be made by reducing the 

noise on the images acquired using low exposure 

as part of optimization process. 

One possible method for this is to employ 

artificial intelligence (AI) methods, including the 

convolutional neural network (CNN) to denoise 

CT images. AI-based methods, like all image 

processing methods, promise less need for X-ray 

exposure as they only deal with image data. One 

example used in this study is the residual encoder-

decoder convolutional neural network (RED-

CNN) proposed by Chen et al. [3]. In their study, 

RED-CNN’s denoising results suggest better 
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denoising performance compared to other image 

denoising methods. The results’ evaluation is 

based on the similarity of RED-CNN-processed 

noisy low-dose images to original normal-dose 

images. These evaluation parameters include 

comparative peak signal-to-noise ratio (cPSNR) 

and structural similarity (SSIM) index [4,5]. RED-

CNN is shown to give results closer to less noisy 

original images than other algorithms mentioned. 

In this study, additional in-depth analysis of 

sharpness and noise texture was also done. While 

this was discussed by Chen et al. [3], their 

evaluation was limited to qualitative measures. 

The modulation transfer function (MTF) cut-off 

frequencies and noise power spectra (NPS) were 

used to evaluate these factors quantitatively [6]. 

MTF frequencies were used to evaluate image 

sharpness while NPS curves were used to evaluate 

the resulting image's noise properties. These 

evaluations were needed as the resulting images 

may suffer from over-smoothing since some CNN 

architectures do not capture image texture well 

[7]. Signal-to-noise ratio (SNR) [8], which gives a 

rough idea of the smoothness of an image, was 

also considered. 
 

 

METHODOLOGY 

In-house phantom images were used as both 

training and testing dataset. For training dataset,    

26 cm PMMA cylindrical phantom images, obtained 

using Philips Ingenuity CT (Philips Healthcare, 

Best, the Netherlands), were used. These images 

have a dimension of 400 × 400 mm represented as 

512 × 512 pixels images. These images were 

obtained at mAs value of 210 mAs and a slice 

thickness of 0.625 mm at both 120 kVp and 140 kVp 

peak tube voltage. Another geometrical variation of 

this phantom (21 × 26 cm elliptical PMMA 

phantom) was also used as an additional testing 

dataset for verification. 

Besides the PMMA phantom images, other 

phantoms were also used for verification as testing 

dataset. These phantoms include homogenous 

water phantom for resulting noise texture 

evaluation and wire phantom for resulting 

sharpness evaluation using MTF measurements. 

Both phantoms have 32 cm diameter and were 

measured at different mAs values (155 mAs,    

200 mAs, 250 mAs, and 300 mAs) to bring 

variation in the noise level of images used as 

testing dataset. The peak tube voltage of these 

images was fixed at 120 kVp with a slice 

thickness of 8 mm. The images were obtained 

using Siemens SOMATOM Cardiac 64 (Siemens 

Healthineers, Erlangen, Germany). 

Due to lack of dose level variation in 

PMMA phantom dataset, noise simulation for 

these images is required. The simulation can be 

mathematically written as Eqs. (1) and (2): 

  

Ild,sim = Poisson(Il̅d,sim) + Gaussian(me, σe)  

 
Where 

 

  Il̅d,sim = Ild,sim
0 exp(−pnd).  

 

pnd represents sinogram data of the images 

obtained using fan-beam projection data and 

attenuation coefficients calculation from HU values 

in the images [9]. Ild,sim
0  represents blank scan flux, 

which can be changed to represent different noise 

levels on images [10,11]. Greater Ild,sim
0  value would 

represent higher photon flux which indicates a lower 

noise level [3]. For a variation in noise level used, 

Ild,sim
0  values of 5.0 × 104, 7.5 × 104, 1.0 × 105, 1.5 × 

105, and 2.0 × 105 were chosen for the training 
dataset, while values of 5.0 × 104, 1.0 × 105, 1.5 × 
105, 2.5 × 105, and 5.0 × 105 were chosen for the 

testing dataset. All testing dataset variation 

measurements were performed with a model trained 

using PMMA phantom images with a blank scan 

flux value of 1.5 × 105, while all training dataset 

variation measurements were performed on PMMA 

phantom images with a blank scan flux value of    

5.0 × 104. me and σe represent mean and variance of 

electronic noise which are discarded in this study as 

invasive measurement on CT detector system is 

required. Once noise was added to the images, the 

resulting sinogram data would then be reconstructed 

using fan-beam reconstruction method with the 

Ram-Lak filter [3,7]. The noisy images are then used 

as RED-CNN’s input, with original images being the 

ground truth. 

Data augmentation was required to enhance 

the generalization capability of the trained model. 

Transformation operations, such as 90˚ rotation and 

mirroring, were applied. The resulting 

transformations would result in eight times the 

amounts of original data. Due to limited availability 

of images available (only four images, two images at 

120 kVp and the other two at 140 kVp), the usual 

transformation operations were not sufficient, and an 

additional augmentation method, which was patch 

extraction (Fig. 1), was required. This method works 

(1) 

(2) 
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by dividing images into equally sized smaller parts 

to increases the dataset’s size, allowing the network 

to learn local details required for optimal noise 

suppression [3]. In this study, a patch size of           

64 × 64 pixels was used, with a stride of 4 pixels and 

no padding. This setting was applied to the cropped 

image dataset (cropped from 512 × 512 pixels to  

384 × 384 pixels). It dramatically increased the 

dataset’s size to over 204,800 unique noisy-normal 

patch pairs extracted from only four original images. 

80 % of noisy-normal patch pairs were used as the 

training set while the other 20 % as the validation 

set. These 204,800 patch pairs were then trained 

using the RED-CNN model. 
 

 
 

Fig. 1.  Examples of extracted patches to be used as the training 

dataset. 

 

The configuration of the CNN architecture 

used in this study is shown in Fig. 2 [3]. The 

architecture consists of five convolution layers 

and five transposed convolution layers with 

residual connections connecting the two types of 

layers. The convolution layers work as the 

encoder part of the network, while the transposed 

convolution layers work as the decoder part. The 

convolutional and transposed convolutional layers 

have 96 filters with a size of 5 × 5, a stride of size 

1, and zero padding. This configuration does not 

include the first convolutional layer and the last 

transposed convolutional layer, both of which 

only have one filter.  Convolutional layers would 

reduce noise and artifact in a CT image. However, 

their use would be followed by some structural 

details loss that can be compensated by using 

transposed convolutional layers that work to 

recover structural details of the images used [3]. 

Rectified linear unit (ReLU) function is used in 

both the decoder and the encoder part of the 

network, so the sparsity of the features can be 

maintained [12]. Lastly, residual connections are 

implemented to enhance the loss optimization 

process as accumulated loss in the network may 

result in unsatisfactory denoised images [3]. 

The RED-CNN model was trained using Adam 

loss optimizer with optimizer parameters β1 and β2 set 

to β1 = 0.9 and β2 = 0.999 (Kingma & Ba, 2015). The 

initial learning rate was set to 0.0001, which slowly 

decayed by a rate of 0.991 every four epochs. This 

training process was performed for 40 epochs. The loss 

function used for the optimization process was mean 

squared error loss function which can be 

mathematically written as Eq. (3): 
 

  Loss =
1

𝑁
 ∑ ||𝑌𝑖 −𝑀(𝑋𝑖)||

2𝑁
𝑖   

 

where 𝑌𝑖 and 𝑋𝑖 are normal dose and low dose CT 

image patches respectively and 𝑀 is the mapping 

function applied to low dose inputs to produce 

outputs as close as possible to the real normal dose 

images [3]. This training process used patch data as 

both the input and the ground truth. As a result, 

image patch reconstruction needed to be performed. 

The reconstruction of the images was done by taking 

the average values of the overlapping area of the 

patches [13]. 

 

    
 

Fig 2. RED-CNN architecture used for CT image noise suppression [3]. 
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Five methods of evaluation were used in this 

study. These include SNR, cPSNR, SSIM, MTF    

10 %, and NPS. SNR measurements were done by 

selecting five different regions of interest (ROI) on 

the phantom, which should exclude area with a 

pictured bead. One example of SNR measurements 

is shown in Fig. 3 The same ROI selections can also 

be used to measure the NPS curves. Meanwhile, 

cPSNR and SSIM measurements were done using all 

areas of the phantom depicted in the images, 

although the images used for these measurements 

were cropped to the size of 384 × 384 pixels to 

exclude most blank area in the images. cPSNR and 

SSIM measurements were done only on PMMA 

phantom images as these measurements need a 

reference of how a denoised image should look like 

and only PMMA phantom images whose noise level 

is modified. Lastly, MTF spatial frequencies 

measurements were done only on ROI with a bead 

depicted as the bead is the only object in the 

phantom images to represent the point spread 

function (PSF) of an imaging system [14]. All 

measurements also considered cross-validation to 

give a clearer idea of the consistency in the 

measurement results when the training dataset's 

composition is changed [15].  

 

 

Fig. 3. ROIs used for SNR and NPS measurements. 

 
 

RESULTS AND DISCUSSION 

The denoising results for different testing 

noise levels (PMMA phantom samples) are shown in 

Fig. 4. The results show that all the image samples 

denoised using RED-CNN have their noise level 

reduced. However, the noise improvement is still 

affected by the noise level in original image 

samples. It is seen that the resulting images from the 

noisiest samples result in improved images with 

higher noise levels compared to other resulting 

images from less noisy original images. This is also 

supported by the measurement results of some 

evaluation parameters such as SNR and NPS.  

 

 

 
Fig. 4. The denoising results of the images on different testing 

noise levels. 

 

 
 
 

(a)  

 
 
 

(b)  

Fig. 5. SNR measurements of denoised (a) PMMA phantom 

images (test dataset) and (b) water phantom images. 
 

SNR measurements show a consistent 
increase in SNR values when the blank scan flux 
value of the testing dataset is increased, as shown in 
Fig. 5, which means consistent decreases in the input 
images' noise level. These measurements were tested 
using PMMA and water phantom images. The noise 
level uses actual mAs values used during the data 
acquisition process for water phantom images. For 
PMMA images, the noise level is indicated by blank 
scan flux value used for  synthetic  noise  simulation.  
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These measurements mean the model can denoise 

entirely new phantom images (i.e., water phantom 

images and different geometries of phantoms with 

the same materials). Despite that, there is             

a difference in how the SNR value increases      

for other materials that might result from 

exclusively using the PMMA dataset in             

the training process.  

Additionally, selecting the optimal blank 

scan flux in the training dataset is needed. Results 

show that a decrease of the SNR value is possible 

in flux values that are either too high or too low 

as shown in Fig. 6. In this study, the maximum 

SNR value measured for noise level variation in 

the training dataset is at a blank scan value of   

7.5 × 104. This value may change as the training 

dataset used is also changed.  

 
 

 
 

Fig. 6. SNR measurements of denoised PMMA phantom images 

with different noise level in the training dataset. 

 

MTF frequency measurements show no 

significant change to images’ sharpness when the 

RED-CNN algorithm was applied to the test     

dataset (PMMA and wire phantom images)          

with varying noise levels indicated by synthetic 

blank scan flux values for PMMA images             

and real mAs values for wire phantom images     

(Fig. 7), similar to noise levels indicators in        

SNR measurements. Significant reduction in      

MTF frequency only happens with the use              

of highly noisy training dataset, as shown in  Fig. 8. 

An up to 45.41 % reduction of MTF 10 %     

frequency value is measured at the lowest flux    

value used (5.0 × 104). Therefore, highly noisy 

images are not suitable to be used as the          

training dataset as the resulting denoised          

images depend significantly on the  training     

dataset quality.  

 
 
 

(a)  

 
 
 

(b) 
 

Fig. 7. MTF 10 % measurements with different testing noise 

levels using (a) PMMA phantom dataset and                             

(b) wire phantom dataset. 

 

 
 
 

Fig. 8. MTF 10 % measurements done for different training data 

noise levels. 

 
NPS measurements for the denoising results 

are shown in Fig. 9 and Fig. 10. The NPS curves 
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levels. Like SNR measurements, lower testing 

images’ noise would result in denoised images with 

45 

40 

35 

30 

25 

20 

15 
0.4 0.6 0.8 1 1.2 1.4 1.6 

Blank scan flux 

S
N

R
 

SNR – PMMA (training data flux variation) 

1.8 2 2.2 

x 105 

0.6 

0.55 

0.5 

0.45 

0.4 

0.35 

0.3 

0.25 

0.2 
1 2 3 4 5 

Blank scan flux 

M
T

F
 1

0
 %

 f
re

q
u

en
cy

 (
m

m
-1

) 

MTF 10 % frequency (testing data flux variation) 

MTF 10 % frequency (original) 

x 105 

260 280 300 320 

0.95 

0.9 

0.85 

0.8 

0.75 

0.7 

0.65 

0.6 

0.55 
140 160 180 200 220 

mAs value (mAs) 

M
T

F
 1

0
 %

 f
re

q
u

en
cy

 (
m

m
-1

) 

MTF 10 % frequency (mAs variation) 

MTF 10 % frequency (original) 

240 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 
0.4 0.6 0.8 1 1.2 1.4 1.6 

Blank scan flux 

M
T

F
 1

0
 %

 f
re

q
u

en
cy

 (
m

m
-1

) 

 

MTF 10 % frequency (training data fluxvariation) 

MTF 10 % frequency (original) 

 

1.8 2 2.2 

x 105 

175 

 



H. B. Cokrokusumo et al. / Atom Indonesia Vol. 48 No. 3 (2022) 171 - 178 

 

 

a lower noise level, as marked by the NPS curves’ 

flattening. However, the resulting NPS curves have 

resulted in a new NPS peak at lower frequency 

values. This is more prominent in image data with 

lower noise levels. This means that as the test 

images’ noise level decreases, the noise texture in 

the resulting denoised images changes and the 

resulting images become more prone to               

over-smoothing. The change of the NPS peak to 

lower frequency values would indicate image     

over-smoothing. Thus, RED-CNN is not suitable for 

use on CT images that are already less noisy. 

cPSNR and SSIM measurements for noise 

level variations in both training and testing 

datasets are shown in Fig. 11 and Fig. 12. These 

measurements show an increasing similarity of the 

denoised images to the low-dose reference with no 

noise added as the blank scan flux value was 

increased in the testing dataset. However, both 

cPSNR and SSIM measurements performed show 

a consistent decrease in the difference between 

noisy and denoised values. This could indicate the 

model’s decaying effectiveness to produce 

denoised images as the flux is increased. At the 

highest blank scan flux value used (5.0 × 105), the 

resulting SSIM value does not differ much from 

the noisy images’, meaning that there is almost no 

improvement in the resulting images’ similarity to 

the reference low-dose images. This may be 

caused by changes in noise texture, as indicated 

by the NPS curves’ changes. Measurements of 

cPSNR and SSIM on training data variation also 

show a tendency of saturation in the values 

measured on mid-level blank scan flux, which is 

parallel to the SNR value trend on different 

training data noise level. 

 
 

      

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. NPS curves of PMMA phantom images (a) before and (b) after denoising. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. NPS curves of water phantom images (a) before and (b) after denoising. 
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Fig. 11. cPSNR (a) and PSNR (b) measurements for variation in the testing data noise level. 

 

    

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12. cPSNR (a) and PSNR (b) measurements for variation in the training data noise level. 

  

 

In general, the study shows that although 

the use of RED-CNN had presented with 

limitations regarding the noise property of the 

training and testing images, it demonstrated a 

major potential towards low-dose CT imaging. 

The study has not yet considered the usage of 

RED-CNN on actual clinical data as it demands 

further ethical clearance. Subsequent studies using 

real clinical data are strongly suggested to better 

present the possibility of using this method in a 

real clinical scenario. 

 

 

CONCLUSION 

It can be concluded that the denoising 

performance of the model depends on the noise 

level of both the training and testing dataset used. 

As the noise level on the testing dataset is 

reduced, the model’s performance  becomes  more  

prone to over-smoothing, and the enhancement of 

the images’ similarity to a low dose reference 

becomes saturated. By varying the noise level on 

the training dataset, it is also shown that applying 

too high training noise level would result in 

decreased image sharpness while using too low 

training noise level would result in reduced 

similarity (to normal-dose images) and SNR in 

resulting images. Further study to investigate the 

optimum set parameters for best results are 

required. 
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