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 In order to predict atomic form factors and incoherent scattering functions which 

are used to calculate the coherent and incoherent total scattering cross sections,     

a technique based on artificial neural networks of the multilayer type was 

implemented. In this context, two neural models have been developed and 

compared with those in the literature. This study revealed both the accuracy of the 

results obtained and the effectiveness of the designed model. The mean relative 

error for the least estimated property does not exceed 16.5 %. The software 

realized in this way give a prediction of the above parameters for the input 

variables Z: Atomic number, x: sin(ϑ/2)/λ and E: Photon energy, and it provides 

users with flexibility for prediction. The advantages of this technique lie in its very 

fast handling, due to its ease of use, and in the two integrated networks, which it 

guarantees for a variety of input parameters such as atomic number, photon 

energy, and momentum transfer variable. 
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INTRODUCTION 

The atomic form factor is defined as a measure 

of the scattering amplitude of an incident wave by an 

isolated atom. The atomic form factor, or atomic 

scattering factor for the photon-atom interaction is a 

complex number whose modulus represents the 

number of electrons in the atom participating in the 

scattering of the incident radiation in the direction of 

angle 2θ with the incident beam. The scattering of a 

radiation is coherent if the scattered photon fully 

retains its initial energy, leaving the scattered electron 

in its original state; otherwise, it is incoherent, in this 

case: the electron of the atom changes state and the 

scattered photon loses a part of its initial energy. 

These two processes take place simultaneously.      

The incoherent scattering function S(x,Z), where x is a 

pulse transfer variable depending on the energy of    

the incident photons in addition to the deflection 

angle of the scattered photons and Z is the atomic 

number, is used for the treatment of deviations, with 

respect to Klein-Nishina expressions, of real atoms. 

This incoherent scattering function is also included in 
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the cross section calculations for the production of 

electron-positron pairs in atomic electron fields,     

also known as the production of triplets [1-2]. 
Based on theoretical data, Hubbell [1] 

presented in his paper a tabulation for atomic form 
factors F(x,Z), and the incoherent scattering 

functions, S(x,Z) for values of x (=sin ϑ/2)/λ) from 
0.005 Å

−1 
to 109 Å

−1
, for all elements Z=1 to 100. 

With this data, he calculated Rayleigh and Compton 
total scattering cross sections for photon energies 

100 eV to 100 MeV [1].  
Since then, and given the great significance of 

coherent and incoherent total scattering cross sections 
in the calculation of radiation attenuation, reactor 

shielding, industrial radiography, medical physics, in 
addition of variety of other applications, several 

works have been carried out to improve the 
determination of these parameters, among them is 

ENDF/B-VIII.0. 

ENDF/B-VIII.0 being the 8
th
 major edition of 

the nuclear reactions data library of the pilot project 

of the international coordination of the CIELO 
evaluation library. The assessments benefit from 

recent experimental data obtained in Europe and      
the United States in addition to improvements in 

theory and simulation [3]. 
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In this trajectory of refining essential 

scattering parameters, a significant evolution has 

transpired through the infusion of artificial 

intelligence, particularly through the integration of 

neural networks. As a result, this study embarks on a 

novel task to explore the incorporation of neural 

networks for the improved prediction of atomic form 

factors and incoherent scattering functions. 
 

 

METHODOLOGY 

A neural network is a black box model which 

does not require any detailed information on the 

system. It is an advanced mathematical modeling 

procedure inspired by the biological neural system. 

The approach seems perfectly suited to problems 

where the relationships between variables are not 

linear and complex. In the structure of multilayer 

neural networks, neurons are grouped into layers,    

an input neuron layer, an output neuron layer,        

and one or more hidden layers which are made up of 

many interconnected neurons with a sigmoid 

activation function [4].  

The elaboration of a database is a crucial 

phase of neural model designing. The selection of 

inputs consists of determining the relevant variables 

about the quantity to be modeled. It aims at two 

main points: the reduction of the dimension of the 

variables representation space of the model and the 

elimination of the inputs which have little or no 

influence on the output. 

To build a reliable and representative 

database, a methodology is followed which include: 

inputs selection of neural model, data collection of 

data formatting, and data normalization. Based on 

this global strategy, details of the different phases of 

the procedure to follow are depicted in Fig. 1 [5]. 
 

 
 

Fig. 1. Procedure for neural network modeling. 

 

Each step mentioned in the flowchart 
presented in Fig. 1 is elaborated below. 

The design of a neural model consists of 
carrying out an evaluation study of the constituent 
elements of the network according to the desired 
performance of the modeling. The aim of this 
study is to build two Artificial Neural Network 
models, ANN1 and ANN2. The first network is 
capable of predicting the atomic form factor and 
the incoherent diffusion function, the second 
network is for the coherent and incoherent 
scattering cross section predicting. 

It is therefore a question of doing static 
modeling; the adequate network in view of the 
monograph consulted can generally only be a 
Multi Layer Perceptron (MLP) feed-forward 
network type. The most useful form of the neural 
model is the linear combination of nonlinear 
functions parameterized variables [6]. 

Normalization of values is a crucial step in 
the design of artificial neural networks, as sigmoid 
type bounded transfer functions are often        
used in static models. Almost the values of the 
neural network input differed by several        
orders of magnitude, which may not reflect the 
relative importance of the inputs determining the 
desired parameter at the output. For this purpose, 
the input and output data were normalized in the 
range of [-1,1] using a double normalization, the 
logarithmic function and the mapminmax 
algorithm given by Eq. 1, which performs a 
normalization of the maximum and minimum 
value of each row [4]. 

 

     
          

           
   (1) 

 

where x is the original vector value, xmax and xmin are 
the maximum and minimum values corresponding to 

x, respectively, and yn is the vector value normalized 
by the vector x. 

After reviewing a considerable number of 
neural networks, differently structured, the adequate 

artificial neural networks selected in this 

investigation, for each network, three hidden layers 
with 40 neurons each and an output layer with two 

neurons. Also for each network, the hidden layers 
have a tansig transfer function and the output layer 

has a linear transfer function. For the first network, 
two variables, Z: Atomic number and x: (=sin ϑ/2)/λ) 

were introduced at the input while F(x,Z): atomic 
form factor and S(x,Z): the incoherent scattering 

function are introduced as output variables. For the 
second network, the two input variables are Z: 

Atomic number and E: Photon energy and the output 

variables are Coh: coherent scattering cross section 

and Inc: incoherent scattering cross section. Figure 2 
shows the typical structure of an artificial neural 

network for the second neural network ANN2 [1,3,7]. 
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Fig. 2. Structural diagram of the ANN model. 

 

The number of experimental data used, 

respectively, in ANN1 and ANN2 is 22987 and 

24438. The two databases are divided into           

three sections: for the ANN1, the training set    

(19215 data), i.e. 83.60 % of the experimental 

database, the test set (1885 data) and the validation 

set (1887 data), i.e. 8.20 % for each set and for the 

ANN2, the training set (19700 data), nearly 80.60 % 

of the experimental database, the test set (2360 data) 

and the validation set (2378 data), that is to say     

9.70 % for each set. Table 1 shows the range of 

variables for each network [1,7]. 
 

Table 1. Variables range. 
 

 

Parameter Measure Unit Min Max 

 

ANN1 

Input 

Atomic Number 

Sin(Theta/2)/Lambda 

Output 

Atomic Form Factor 

Incoherent Scattering Function 

 

 

 

Z 

x 

 

F(x,Z) 

S(x,Z) 

 

 

 

- 

- 

 

- 

- 

 

 

 

1.00E00 

0.00E00 

 

8.18E-39 

0.00E00 

 

 

 

1.00E02 

1.00E09 

 

1.00E02 

1.00E02 

 

 

ANN2 

Input 

Atomic Number 

Photon Energy 

Output 

Coherent Scattering Cross-Section  

Incoherent Scattering Cross-

Section 

 

 

 

 

Z 

E 

 

Coh 

Inc 

 

 

 

 

- 

eV 

 

Barns/atom 

Barns/atom 

 

 

 

 

1.00E00 

1.00E00 

 

4.63E-16 

7.17E-08 

 

 

 

 

1.00E02 

1.00E11 

 

3.44E04 

4.09E01 

 

 
 

Performance assessment 

For the statistical study and in order to 

measure the performance of neural network models, 

ANN1 and ANN2, developed for the prediction of 

four physical parameters, several performance 

criteria were used. Mean Relative Absolute Error 

(MRAE), Root Mean Squared Error (RMSE), 

Correlation Coefficient (R), Coefficient of 

Determination (R
2
), Accuracy Factor (Af), Bias 

Factor (Bf), Wilmot’s index (WI), Legates-McCabe's 

index (LMI) and the acceptability criteria (K) and 

(K') were used as a measure of precision and 

expressed as follows [8-14]:  

 Mean Relative Absolute Error: 
 

        [
 

 
∑

|         |

    

 

   

]      (2) 

 

 Root Mean Square Error: 
 

     [
 

 
∑            
 

   

]

   

 (3) 

 

 Correlation Coefficient: 
 

  
∑ (  

   
     ̅̅ ̅̅ ̅̅ )(  

   
     ̅̅ ̅̅ ̅̅ ) 

   

[∑ (  
   

     ̅̅ ̅̅ ̅̅ )
  

   ∑ (  
   

     ̅̅ ̅̅ ̅̅ )
  

   ]
   

 (4) 

 

 Coefficient of Determination: 
 

     
∑ (  

   
   

   
)
  

   

∑ (  
   

   
   ̅̅ ̅̅ ̅̅ )

 
 
   

 (5) 

 

 Accuracy Factor: 
 

     
[
 
 

∑ |   
  
   

 
 
   | 

 ]

 
(6) 

 

 Bias Factor: 
 

     
[
 
 
∑    

  
   

  
   

 
 ]

 
(7) 

 

 Wilmot’s Index: 
 

     
∑              

   

∑ [|  
   

   
   ̅̅ ̅̅ ̅̅ |  |  

   
   

   ̅̅ ̅̅ ̅̅ |]
 

 
   

 (8) 

 

 Legates-McCabe’s Index: 
 

      
∑ |         | 

   

∑ |         ̅̅ ̅̅ ̅̅ | 
   

 (9) 

 

 Criteria of acceptability: 
 

  
∑   

   
  

    
   

∑   
     

   

 (10) 

 

 Criteria of acceptability: 
 

   
∑   

   
  

    
   

∑   
     

   

 (11) 

Input Layer Output Values 

Input Signals 
(Values) 

Hidden Layers 

Output Layer 
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RESULTS AND DISCUSSION 

By applying Eq. 2 to Eq. 11 above, Table 2 
and Table 3 below compile some static 
performances of the network parameters of the 
ANN1 and ANN2, of the design phase of the neural 
model, that is to say, training, testing, validation 
phase and the entire database. 

For the sake a better presentation of the 
results, those obtained during the training and 

validation phases of the neural model design phase 
are presented first. Table 2, Fig. 3 and Fig. 4 present 

the results for the ANN1. For example, the results 
relating to the atomic form factor F(x,Z), in the 

testing phase are noted, the Mean Relative Absolute 

Error value against the dataset is less than 0.38 % 
and it is less than 1.85 % for the incoherent 

scattering function S(x, Z), also in the testing phase. 
The correlation coefficient value of 1 for all data 

indicated the reliability of the ANN1 model. 

For ANN1, the accuracy factor Af and the   

bias factor Bf, which are criteria for evaluating the 

performance of the model, are equal to unity. 
Indeed, the precision factor Af will always be one or 
greater than one because all the variances are 
positive. The Af value of 1.1 means that the predicted 
value is 10 % different from the experimental value. 
The Bf indicates the overall agreement between      
the predicted values and the experimental values,      
a Bf equal to 1 signifies a total agreement. For a       
Bf = 0.9-1.05, the model is good; for a Bf between 
0.7 and 0.9, the model is acceptable. The model is to 
be used with caution for a Bf between 1.06 and 1.15, 
and for a Bf <0.7 and Bf > 1.14, the model is rejected. 

Two other indices measure precision: the 
Wilmot index and the Legates-McCabe index, 
whose values are practically equal to 1. 

The ANN1 model was also evaluated by the 
acceptability criteria K and K' which are equal to 1, 
our model is acceptable because 0.85 ≤ K ≤ 1.15   
and 0.85 ≤ K' ≤ 1.15. It is important to note that     
the size of the matrices used to perform the     
training is 19215, the validation of 1887 and for the 
test of 1885 columns. 

 

Table 2. Performance metrics of the ANN1. 
 

Performance Function Training Testing Validation All 

MRAE% 
F(x,Z): 

S(x,Z): 

332.0473e-03 

1.3722e00 

378.3296e-03 

1.8509e00 

359.1478e-3 

1.8155e00 

338.0673e-03 

1.4478e00 

MSE 
F(x,Z): 

S(x,Z): 

1.5957e-03 

18.2623e-03 

3.3917e-03 

25.2280e-03 

3.4347e-03 

25.1862e-03 

1.8940e-03 

19.4019e-03 

R 
F(x,Z): 

S(x,Z): 

999.9976e-03 

999.9823e-03 

999.9959e-03 

999.9742e-03 

999.9957e-03 

999.9744e-03 

999.9973e-03 

999.9811e-03 

R2 
F(x,Z): 

S(x,Z): 

999.9952e-03 

999.9647e-03 

999.9916e-03 

999.9483e-03 

999.9914e-03 

999.9487e-03 

999.9946e-03 

999.9623e-03 

Af 
F(x,Z): 

S(x,Z): 

1.0000e00 

1.0000e00 

1.0000e00 

1.0000e00 

1.0000e00 

1.0000e00 

1.0000e00 

1.0000e00 

Bf 
F(x,Z): 

S(x,Z): 

1.0000e00 

999.9993e-03 

999.9995e-03 

999.9995e-03 

1.0000e00 

999.9994e-03 

1.0000e00 

999.9993e-03 

WI 
F(x,Z): 

S(x,Z): 

999.9988e-03 

999.9912e-03 

999.9979e-03 

999.9871e-03 

999.9978e-03 

999.9872e-03 

999.9986e-03 

999.9906e-03 

LMI 
F(x,Z): 

S(x,Z): 

998.8551e-03 

995.9505e-03 

998.3931e-03 

995.1996e-03 

998.4045e-03 

995.2054e-03 

998.7763e-03 

995.8444e-03 

K 
F(x,Z): 

S(x,Z): 

1.0001e00 

999.9772e-3 

1.0002e00 

1.0000e00 

1.0002e00 

1.0000e00 

1.0001e00 

999.9829e-03 

K' 
F(x,Z): 

S(x,Z): 

999.8797e-3 

1.0000e00 

999.7696e-03 

999.9650e-03 

999.8339e-03 

999.9465e-03 

999.8630e-03 

1.0000e00 

Best linear fit 
F(x,Z): 

S(x,Z): 

Y=T+0.00046 

Y=T+0.00034 

Y=T-0.002 

Y=T+0.014 

Y=T+0.0027 

Y=T+0.014 

Y=T+0.00044 

Y=T+0.0029 

 
Table 3. Performance metrics of the ANN2. 

 

Performance Function Training Testing Validation All 

MRAE% 
Coh 

Inc 

2.9470 

927.5628E-3 

2.1122 

831.7655E-3 

2.1387 

844.6996E-3 

2.7877 

910.2484E-3 

MSE 
Coh 

Inc 

226.2057 

1.1026E-3 

230.0990 

1.8322E-3 

230.4619 

1.8366E-3 

226.9958 

1.2445E-3 

R 
Coh 

Inc 

999.4291E-3 

999.9851E-3 

999.4836E-3 

999.9808E-3 

999.4779E-3 

999.9808E-3 

999.4415E-3 

999.9845E-3 

R2 
Coh 

Inc 

998.8458E-3 

999.9703E-3 

998.9646E-3 

999.9616E-3 

998.9541E-3 

999.9616E-3 

998.8737R-3 

999.9690E-3 

Af 
Coh 

Inc 

1.0000 

1.0001 

1.0000 

1.0001 

1.0000 

1.0001 

1.0000 

1.0001 

Bf 
Coh 

Inc 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

WI 
Coh 

Inc 

999.7102E-3 

999.9926 E-3 

999.7406E-3 

999.9904E-3 

999.7380E-3 

999.9901E-3 

999.7173E-3 

999.9922E-3 

LMI 
Coh 

Inc 

980.4174E-3 

996.6802 E-3 

981.8240E-3 

995.5050E-3 

981.7806E-3 

995.5334E-3 

980.8198E-3 

996.4991E-3 

K 
Coh 

Inc 

1.0031 

1.0000 

1.0015 

999.8775E-3 

1.0012 

999.9243E-3 

1.0027 

999.9768E-3 

K' 
Coh 

Inc 

995.8989E-3 

999.9704 E-3 

997.6942E-3 

1.0001 

997.9403E-3 

1.0001 

996.3370E-3 

1.0000 

Best linear fit 
Coh 

Inc 

Y=T+1.1 

Y=T+0.00011 

Y=T+0.19 

Y=T-0.00035 

Y=T+0.27 

Y=T-0.0002 

Y=T+0.92 

Y=T+4.9E-5 
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Fig. 3. Regression plots of the ANN model for the prediction of the atomic form factor, F(x, Z). 

 

 
 

Fig. 4. Regression plots of the ANN model for the prediction of the incoherent scattering function, S(x, Z). 
 

 
 

Fig. 5. Regression plots of the ANN model for the prediction of the coherent scattering cross-section, Coh. 

 

 
Fig. 6. Regression plots of the ANN model for the prediction of the incoherent scattering cross-section, Inc. 
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Table 3, Fig. 5 and Fig. 6 show the results of 

the ANN2 network, for example, the coherent 

scattering cross-section Coh, in the training phase, 

Mean Relative Absolute Error value with respect to 

the dataset is less than 2.95 % and less than 0.93 % 

for the incoherent scattering cross-section inc, also 

in the training phase. The correlation coefficient       

R is equal to 1. 

For ANN2, the accuracy factor Af and the bias 

factor Bf, are also equal to 1, indicating full 

agreement. The ANN2 model is also acceptable 

because K and K' are equal to 1. And for the 

precision, the Wilmot's index and the Legates-

McCabe index, their values are practically equal to 1. 

It is important to mention that the size of the 

matrices used to perform the training is 19700,       

the validation is 2378, and for the test 2360 columns. 

It is important to note that the two neural 

models ANN1 and ANN2 perfectly reproduce the 

experimental data that were used for training and 

validation. The two networks manage to keep up 

with the evolution of the output parameters which 

puts them out of the domains of under or overfitting. 

It is clear that the distribution of the predicted 

results, of the two neural models, around the 

experimental values is quite acceptable; the Mean 

Relative Absolute Error committed on this sample    

is less than 2 %. 

To measure the performance of the designed 
neural models, the results obtained are compared 
with those of the models proposed by ENDF/B-
VIII.0 [7]. Table 4 presents the comparative study 
between the neural model and ENDF/B-VIII.0 for 
the four parameters of the two networks ANN1 and 
ANN2. The obtained results, as can be seen, are in 
complete agreement with the model of ENDF/B-
VIII.0. The average relative error made over the 
whole of this test oscillates between 0.16 % for the 
incoherent scattering function S(x,Z) of the ANN1 
network and 0.74 % for the coherent scattering 

cross-section coh of the ANN2 network. 

Another comparison study was carried out by 

comparing the predictions of the ANN2 neural 

network with the results taken from Hubbell et al. 

[1], which has long been a reference in this field. 

According to Table 5 above, a large deviation 

of the coherent scattering cross-section coh is 

observed compared to the the reference [1].     

Indeed, the average relative error is 335.56 %,     

while the error values vary between 15.57 % and 

945.11 %. On the other hand, for the network 

ANN2, the mean relative error of the coherent 

diffusion cross-section is 3.72 %. 
 

Table 4. Comparative study between the neural model and the ENDF/B-VIII.0. 
 

 ENDF/B-VIII.0
2
 Neural model 

ANN1 Element Z[-] x[-] Value Value RE [%] 

F(x,Z)  H 1 2.00e-02 9.9121e-01 9.8990e-01 0.32 

[-] Mn 25 1.50e-01 2.0739e+01 2.0837e+01 0.49 

 Sn 50 7.00e+00 1.3552e+00 1.3660e+00 1.07 

 Re 75 5.00e+01 1.1445e-01 1.1397e-01 0.18 

 Ra 88 1.00e+03 9.2072e-05 9.2163e-05 0.30 

MRE      0.47 

S(x,Z) P 15 3.00e-02 2.7660e-01 2.9489e-01 0.20 

[-] Br 35 7.00e-01 1.8185e+01 1.8043e+01 0.78 

 Nd 60 1.25e+00 3.7848e+01 3.7789e+01 1.60 

 At 85 1.00e+02 8.5000e+01 8.5000e+01 0.00 

 Fm 100 1.00e+06 1.0000e+02 1.0000e+02 0.00 

MRE       0.16 

ANN2 Element Z[-] E[ev] Value Value ER [%] 

Coh N 7 4.00e+02 8.6172e-01 8.5945e-01 0.26 

[Barns/Atom] V 23 8.00e+03 1.1012e+02 1.1123e+02 1.01 

 Sm 62 6.00e+05 1.1894e+00 1.1943e+00 0.41 

 Rn 86 5.00e+06 4.2739e-02 4.2406e-02 0.78 

 Es 99 5.00e+07 6.4080e-04 6.3279e-04 1.25 

MRE      0.74 

Inc  Li 3 1.00e+03 3.5514e-01 3.5322e-01 0.54 

[Barns/Atom] K 19 3.00e+04 9.1651e+00 9.1615e+00 0.04 

 Mo 42 8.00e+05 9.8111e+00 9.8147e+00 0.04 

 Lu 71 6.00e+06 5.1963e+00 5.1742e+00 0.43 

 Cf 98 4.00e+07 1.7115e+00 1.7048e+00 0.39 

MRE      0.29 
 
 

 2By interpolation specific to NDF evaluation 
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Table 5. Comparative study between ANN2 and the Hubbell model J.H compared to the ENDF/B-VIII.0. 
 

 ENDF/B-VIII.03 Hubbell J.H  Neural model 

ANN2 Element Z[-] E[ev] Value Value RE [%] Value RE [%] 

Coh 

[Barns / 

Atom] 

C 
 

 

 
Sn 

6 
 

 

 
50 

1.00e+02 
1.50e+02 

1.00e+03 

 
1.00e+02 

1.50e+02 

1.00e+03 

9.4818e+00 
8.4347e+00 

2.5549e+01 

 
3.4238e+02 

1.5893e+02 

1.3166e+03 

2.3940e+01 
2.3900e+01 

2.1570e+01 

 
1.6620e+03 

1.6610e+03 

1.5740e+03 

152.48 
183.35 

015.57 

 
385.43 

945.11 

019.55 

1.0241e+01 
8.6939e+00 

2.5727e+01 

 
3.3376e+02 

1.5532e+02 

1.3520e+03 

8.01 
3.07 

0.70 

 
2.52 

2.27 

2.69 
  

Fm 

 

100 

 

1.00e+02 

1.50e+02 
1.00e+03 

 

9.69113e+02 

9.57275e+02 
2.57905e+03 

 

6.6490e+03 

6.6440e+03 
6.3680e+03 

 

586.09 

585.58 
146.91 

 

1.0230e+03 

9.2975e+02 
2.7276e+03 

 

5.56 

2.88 
5.76 

MRE      335.56  3.72 
 

  

  3By interpolation specific to NDF evaluation 

 

 
Software organization chart 

Among the most obvious applications of 

neural networks are prediction applications, in our 

case the prediction of the atomic form factor,        

the incoherent scattering function, the coherent 

scattering cross-section and the incoherent   

scattering cross-section F(x,Z), S(x,Z), Coh and 

Inc, respectively. This type of applications          

is of great importance to people who have to 

perform calculations that, in the absence of 

powerful software, can be often complex and 

time-consuming. 

Traditionally, the user has had to familiarize 

themselves with the use of tabulations constructed 

from theoretical data. The use of these tables gives 

rise to more tedious computation, often very 

repetitive, which distract from the principal. 

In fulfilling this real expectation, we have 

integrated the two neural networks ANN1 and 

ANN2, already validated, that is to say, the weights 

and biases of each layer are determined, in a 

program to make precise complex calculations very 

easily and in a minimum time period. This program 

can rigorously predict the atomic form factor, the 

incoherent scattering function, the coherent 

scattering cross-section and the incoherent 

scattering cross-section of all elements from            

Z = 1 to Z = 100 using equation (12) below [4,14]. 

 

       ∑[          (∑        

 

   

)

  

   

    
] 

(12) 

 

where g(x,w) is the output, w and b are respectively 

the weight and the bias, Nh and n are respectively the 

number of the hidden layers and the number of 

neuron; x is normalized input, and th is           

transfer function.   

Figure 7 shows the designed software 

interface in a user-friendly way [15,16]. On the      

left is displayed all the chemical elements of the 

Mendeleev table ordered by increasing atomic 

number and organized according to their      

electronic configuration. On the top right of the 

window are displayed the chemical properties         

of the elements including the atomic number     

which is the first entry and common for both 

networks. On the lower part of the window are two 

tabs one for sin(ϑ/2)/λ where introduces this       

value, as the second input parameter of the first 

neural network ANN1, to obtain the atomic         

form factor and of the incoherent scattering     

function and the other for photon energy where     

this value is introduced, as the second input 

parameter of the second neural network ANN2, to 

obtain the coherent and the incoherent scattering 

cross-section. 

 

 
 

Fig. 7. Soft interface for predicting the F(x,Z), S(x,Z),              

Coh and Inc using Artificial Neural network. 
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Figure 8 shows an example of output from the 

software.I It presents the plot of the coherent 

scattering cross-section, Coh of Fermium element 

whose atomic number Z=100, where x=sin(ϑ/2)/λ 

varied from 0 to 1000 by a step of 10. 

 
Fig. 8. Plot of coherent scattering cross-section, Coh of 

Fermium element. 
 

 

CONCLUSION 

The development of applications involving 

artificial neural networks in the calculations and 

prediction of atomic form factors, incoherent 

scattering functions in addition to coherent and 

incoherent scattering cross sections F(x,Z), S(x,Z), 

Coh and Inc, respectively, proves to be beneficial. 

The advantage of this method is highlighted            

by its inclusion the good agreement, when 

comparing the results obtained by neural networks 

and referring to both previous works from 

international bibliographic database and experience. 

Errors, likely to be made remain very acceptable; 

indeed, the comparative studies carried out       

during the comparison of the results show their 

effectiveness and their performances. Hence,            

it is concluded the neural models developed in this 

work are reliable and efficient tools and can be 

successfully employed to provide an accurate 

prediction of the form factors and scattering cross 

sections. The integration of these models in a 

computer program will allow users, for complex 

calculations, their application with simplicity and 

speed in a minimum of time. 
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