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 This research aims to comprehend the evolution of radioactive isotopes      

Iodine-131 (I-131), Cesium-134 (Cs-134), and Cesium-137 (Cs-137) over time in 

diverse locations and analyze their relationships with the independent variables 

Longitude and Latitude using Linear Regression, Principal Component Analysis 

(PCA), and Canonical Correlation Analysis (CCA). The data used in this study 

were processed from the "DE.xlsx" file, including the imputation of missing 

values with 0 and column transformation into factors. The results of the Linear 

Regression analysis indicate a significant association between these isotopes and 

Longitude and Latitude. Additionally, PCA and CCA analyses reveal complex 

relationships between the isotopes and independent variables. This research 

provides valuable insights into the historical trends of radioactive isotopes 

Iodine-131 (I-131), Cesium-134 (Cs-134), and Cesium-137 (Cs-137) in various 

locations. The novel aspect and uniqueness of this study lie in the utilization of a 

comprehensive analytical approach, combining Linear Regression, PCA, and 

CCA to comprehend the relationships between isotopes and specific 

environmental factors. Moreover, this study significantly contributes to 

understanding the phenomena of radioactive isotopes and can serve as a 

foundation for further research in this field. The findings of this research are 

expected to support efforts in preventing and managing potential environmental 

and human health impacts of radioactive isotopes in the future. 
   

© 2023 Atom Indonesia. All rights reserved 
   

   

INTRODUCTION 

Background 

The background of this research is related to 

the analysis of radioactive isotopes Iodine-131       

(I-131), Cesium-134 (Cs-134), and Cesium-137  

(Cs-137) data at various locations. These isotopes 

are generally formed as a result of nuclear reactions 

involving nuclear reactors, nuclear explosions, or 
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nuclear accidents [1]. The presence of these isotopes 

in the environment can have impacts on both the 

environment and human health [2]. This study relies 

on processed data from the "DE.xlsx" file, involving 

critical steps like filling NAs with 0, converting 

columns to numeric data, and transforming others 

into factors. This rigorous data preparation ensures 

the data's integrity. Subsequently, the processed data 

is employed to generate time series plots for various 

radioactive isotopes. These plots visually depict the 

evolving radioactivity trends, enabling the 

identification of patterns and changes across 
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different locations [3]. The research results offer 

valuable insights into the historical trends of 

radioactive isotopes I-131, Cs-134, and Cs-137, 

aiding our understanding of radioactivity changes, 

their environmental and health impacts, and 

enhancing nuclear activity management         

through precise data processing techniques for 

reliable findings. 

This research aims to analyze the radioactivity 

levels of I-131, Cs-134, and Cs-137 at different 

locations, exploring their connection with Longitude 

and Latitude. It offers insights into isotope behavior 

over time, identifies trends, and assesses the impact 

of nuclear events on environmental radioactivity [4]. 

Enhancing awareness of statistical analysis methods 

like linear regression and hypothesis testing to 

empower researchers and stakeholders in addressing 

radioactivity risks effectively.  

This research exclusively examines three 

radioactive isotopes (I-131, Cs-134, and Cs-137) 

utilizing data from the "DE.xlsx" file with some 

processing. Notably, the data's origin and collection 

location are unspecified. Regression analysis was 

exclusively performed on I-131 and Cs-137 using 

Longitude and Latitude as independent variables. 

Additional statistical analyses, including the Chi-Square 

test and Factor Analysis, were exclusively conducted on 

I-131, Cs-134, and Cs-137 isotopes. 

Research findings on radioactive isotope 

behavior offer crucial insights for nuclear security, 

environmental health, and policy-making, enabling 

effective preventive and mitigation measures. 

This research innovatively utilizes radioactive 

isotopes I-131, Cs-134, and Cs-137 from diverse 

locations, employing various statistical analyses to 

reveal relationships with Longitude and Latitude. It 

also involves regression analysis and hypothesis 

testing. While yielding valuable results, future 

studies can improve by explaining data sources and 

location origins, enhancing statistical analysis, 

exploring other isotopes, and examining additional 

influencing factors. This novel approach provides 

insights into radioactive isotope behavior and 

management, fostering future research opportunities. 

In this research, Fig. 1 illustrates the 

geographical coordinates used to measure radiation 

exposure from the Chernobyl nuclear accident. 

Figure 2 focuses on Location Group 1 in Germany, 

the starting point for analyzing radiation pollution. 

Figure 3 visually represents time series analysis of 

Iodine-131, Cesium-134, and Cesium-137 using    

R-Studio. Figure 4 uses R-Studio for regression 

analysis of these isotopes in relation to Longitude 

and Latitude. Figures 5 to 22 display various 

analyses conducted with R-Studio, offering deep 

insights into radiation data and its influencing 

factors in specific regions, contributing to our 

scientific understanding of isotopic radiation impact. 

This article comprehensively analyzes the 

behavior of isotopes I-131, Cs-134, and Cs-137 in 

connection to nuclear incidents, citing the work of 

Assimakopoulos, Ioannides, and Paradopoulou [5] 

on their transport into cheese products                

post-Chernobyl.  Hashimoto, S., Komatsu, M., and 

Miura's [6] article, 'Radioactive Materials Released 

by the Fukushima Nuclear Accident,' delves          

into the release of radioactive materials            

during the Fukushima nuclear disaster. Article by 

Masson et al. [7] discusses radioiodine releases in 

nuclear emergencies. 

 

 
METHODOLOGY 

Coordinate and latitude processing 

In the context of the Chernobyl accident, 

isotope pollution refers to the release of radioactive 

materials into the environment due to a leak at the 

Chernobyl nuclear reactor in Ukraine in 1986 [8]. 

This pollution resulted in the spread of radioactive 

substances, including certain isotopes, such as I-131, 

Cs-134, and Cs-137. It is possible to analyze the 

Mean Longitude data of these countries to 

understand the extent of the impact of Chernobyl 

isotope pollution on geographic data variation across 

countries, with a focus on the distribution of      

Mean Longitude.  
 

 

Fig. 1. Longitude and latitude coordinates of isotope radiation exposure measured due to the Chernobyl nuclear accident. 
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Figure 1 illustrates that some countries, like 

Ireland (IR) and the United Kingdom (UK), exhibit a 

symmetrical distribution of Mean Longitude with the 

median slightly below zero, indicating a specific trend. 

In contrast, countries such as Spain (ES) and Norway 

(NO) display a more variable Mean Longitude 

distribution, with a wider range and outlying values, 

suggesting a higher degree of variation. These 

variations may reflect the impact of isotope pollution 

from the Chernobyl accident on environmental and 

ecological conditions in different regions [9]. 

Table 1 provides key statistics on Latitude and 

Longitude coordinates for different countries, 

highlighting significant variability in their geographic 

positioning. For example, the Czech Republic (CZ) 

exhibits notably diverse spatial data points with high 

standard deviations, while countries like Hungary (HU) 

and Iran (IR) have data concentrated at a single 

location, indicated by zero standard deviations. This 

table aids in evaluating the dispersion and central 

tendencies of geographic data in these countries. 

 
Table 1. Statistics on the mean and standard deviation of 

Latitude and Longitude coordinates of each country. 
 

PAYS 
Mean 

Longitude 

SD 

Longitude 

Mean 

Latitude 

SD 

Latitude 

AU 13.9 1.99 47.7 0.638 

BE 4.71 0.398 51 0.201 

CH 7.52 0.489 46.4 0.123 

CZ 43.8 11.4 22.3 13.4 

DE 9.22 2.13 50.2 1.79 

ES -0.164 0.199 16.2 19.6 

F 3.51 2.17 47.3 2.19 

FI 24.9 0.132 60.2 0.141 

GR 23 0.806 39.4 1.24 

HU 19.1 0 47.5 0 

IR -6.28 0 53.4 0 

IT 10.9 2.59 43.8 2 

NL 5.22 1.03 52.4 0.622 

NO 8.96 3.19 53.3 18.8 

SE 15.6 3.05 59.1 2.83 

UK -2.63 1.4 53.1 1.94 

 
 

 
Fig. 2. Selection of group 1 location will concentrate attention 

on the analysis and exploration of pollution in Germany. 

Figure 2 highlights the significance of 

selecting Germany as Group 1's focal point, 

allowing an in-depth analysis of pollution using 

provided data. The research aims to uncover isotope 

value variations in I-131, Cs-134, and Cs-137 across 

different German locations, establishing connections 

between geographic coordinates and pollution 

levels. This involves applying diverse statistical 

analysis methods for valuable insights. 

 

 

Time series graphs  

This research employed time series analysis to 
track the trends of radioactive isotopes, including    
I-131, Cs-134, and Cs-137, using data from the 
'DE.xlsx' file. Preprocessing steps addressed missing 
values, data type conversion, and column 
transformation to enhance subsequent analysis. 

After processing the data, time series plots 
were created for radioactive isotopes I-131, Cs-134, 
and Cs-137, revealing historical trends and behavior. 
These insights are vital for understanding 
environmental and human health implications, 
enhancing the study's accuracy and effectiveness. 

Such research is vital for tracking and 
analyzing radiation levels at various sites to evaluate 
the consequences of nuclear incidents, tests, or other 
factors that may raise radioactive isotope levels in 
the environment. This knowledge empowers 
researchers and policymakers to make informed 
choices about radioactive material safety, ecosystem 
impact, and human population well-being. 

In Fig. 3, the study employed R-Studio 
programming language for time series analysis, 
offering a comprehensive exploration of Iodine-131 
(I131), Cesium-134 (Cs134), and Cesium-137 
(Cs137) isotopes' temporal evolution, revealing 
valuable insights into their behavior and trends. 

 

 

Fig. 3. R-Studio programming language for time series analysis 

methods to investigate and describe the evolution of certain 

radioactive isotopes, namely Iodine-131 (I131), Cesium-134 

(Cs134), and Cesium-137 (Cs137) over time. 
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Regression analysis 

Regression analysis is a statistical technique 

used to investigate the relationship between a 

dependent variable (also known as the response 

variable) and one or more independent variables 

(also known as predictor variables) [10]. It helps to 

understand how changes in the independent 

variables are associated with changes in the 

dependent variable. The analysis uses simple linear 

regression. Simple linear regression is a type of 

regression analysis that examines the linear 

relationship between one independent variable and 

one dependent variable [11]. It fits a straight line to 

the data points to represent the relationship. Multiple 

linear regression is an extension of simple linear 

regression, and it allows us to investigate the 

relationship between one dependent variable and 

multiple independent variables [12]. It fits a linear 

equation to the data points, considering the 

combined effects of all the independent variables on 

the dependent variable. 

 

 

Fig. 4. R-Studio programming language for regression analysis 

performed on different isotopes (I-131, Cs134, and Cs137) with 

respect to their relationship with two independent variables, 

longitude and latitude. 

 

In Fig. 4, the research employed the R-Studio 

programming language to conduct a regression 

analysis on various isotopes, namely I131, Cs134, 

and Cs137. The analysis aimed to explore the 

relationship between these isotopes and two 

independent variables, Longitude and Latitude 

coordinates. For the simple linear regression 

analysis, the mathematical model for each isotope 

can be represented as Eqs. (1-3). 

For I131: 

I-131 I-131

I-131 0 1 1Y X = +   (1) 

For Cs134: 

Cs134 Cs134

Cs134 0 1 1
Y X = +   (2) 

For Cs137: 

Cs137 Cs137

Cs137 0 1 1
Y X = +   (3) 

For the multiple linear regression analysis, the 

mathematical model for each isotope can be 

represented as Eqs. (4-6). 

For I131: 

I-131 I-131 I-131

I-131 0 1 1 2 2
Y X X  = +  +   (4) 

For Cs134: 

Cs134 Cs134 Cs134

Cs134 0 1 1 2 2
Y X X  = +  +   (5) 

For Cs137: 

Cs137 Cs137 Cs137

Cs137 0 1 1 2 2
Y X X  = +  +   (6) 

In these equations, 
0

  represents the 

intercept, and 
1

   and 
2

  represent the coefficients 

of the independent variables (Longitude and 

Latitude) for each isotope. 

 

 

Descriptive analysis 

 This research method is descriptive analysis. 

Descriptive analysis is a research method aimed to 

systematically and concisely describe and present 

data [13]. This study utilizes descriptive analysis to 

describe the characteristics of three radioactive 

isotopes, namely I-131, Cs-134, and Cs-137, along 

with several related independent variables. In 

descriptive analysis Fig. 5, the researcher presents 

relevant descriptive statistics for each isotope, 

including the mean, median, mode, standard 

deviation, variance, minimum value, and maximum 

value [14]. Additionally, the researcher also 

calculates the first quartile (Q1) and third quartile 

(Q3) to depict the data distribution. 

 

 

Fig. 5. R-Studio programming language for descriptive analysis. 

 

 

One sample t-test 

The research used the One Sample t-test 

method to test hypotheses about the means of three 

isotopes: I-131, Cs-134, and Cs-137. The t-test is a 

statistical method used to determine if there is a 

significant difference between the mean of a sample 

and a hypothesized value [15]. The following is a 

step-by-step explanation of the One Sample t-test 

method used in the study. 
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For null Hypothesis (H0), the true mean of 

each isotope (I-131, Cs-134, Cs-137) is equal to zero 

(μ = 0). For alternative Hypothesis (Ha), the true 

mean of each isotope (I-131, Cs-134, Cs-137) is not 

equal to zero (μ ≠ 0). The study collected samples 

of each isotope (I-131, Cs-134, Cs-137) and 

calculated their sample means (mean of x). The       

t-statistic is a measure of how many standard errors 

the sample mean is away from the hypothesized 

mean (μ = 0) and is calculated using the formula, see 

Eq. (7) [16]. 

mean of hypothesized mean

standard error of the mean

x
t

−
=  (7) 

The degrees of freedom represent the number 

of independent pieces of information in the sample 

data used to calculate the t-statistic [17]. It is 

calculated as the sample size minus 1 (df = sample 

size - 1) [17]. The p-value is the probability of 

obtaining results as extreme or more extreme than 

the observed results, assuming that the null 

hypothesis is true [18]. A smaller p-value suggests 

stronger evidence against the null hypothesis [19]. It 

is compared to a significance level (usually 0.05) to 

determine statistical significance. The 95 % 

confidence interval provides a range of values within 

which the true mean of the population (μ) is likely to 

lie with 95 % confidence [20]. 

Let 
131 134 137

,  ,  and  
I Cs Cs

x x x  represent the sample 

means for isotopes I-131, Cs-134, and Cs-137, 

respectively. Let 
131I

s , 
134Cs

s , and 
137Cs

s  represent the 

standard deviations of the samples for             

isotopes I-131, Cs-134, and Cs-137,         

respectively. The standard error (SE) is calculated   

as Eqs. (8-10). 

131

131
,I

I

s
SE

n
=  (8) 

where n is the sample size for isotope I-131: 

134

134
,Cs

Cs

s
SE

n
=  (9) 

where n is the sample size for isotope Cs-134: 

137

137
,Cs

Cs

s
SE

n
=  (10) 

where n is the sample size for isotope Cs-137.  

The t-statistic measures how many standard 

errors the sample mean is away from the 

hypothesized mean ( 0) =  and is calculated as   

Eqs. (11-13). 

131

131

131

0
,I

I

I

x
t

SE

−
=  (11) 

134

134

134

0
,Cs

Cs

Cs

x
t

SE

−
=  (12) 

137

137

137

0
.Cs

Cs

Cs

x
t

SE

−
=  (13) 

The degrees of freedom represent the number 

of independent pieces of information in the sample 

data used to calculate the t-statistic and is calculated 

as the sample size minus 1, see Eq. (14). 

1,df n= −  (14) 

where n is the sample size for each isotope. The      

p-value is the probability of obtaining results as 

extreme or more extreme than the observed results, 

assuming that the null hypothesis is true [18]. It can 

be calculated using a t-distribution table or statistical 

software based on the t-statistic and degrees of 

freedom [21]. If the p-value is smaller than the 

chosen significance level (usually 0.05), we reject 

the null hypothesis in favor of the alternative 

hypothesis, indicating a statistically significant 

difference in the mean of the isotope [22]. The 95 % 

confidence interval provides a range of values within 

which the true mean of the population ( )  is likely 

to lie with 95 % confidence [20]. The confidence 

interval can be calculated using the t-distribution and 

is given Eqs. (15,16). 

( ),
lower critical

CI x t SE= −   (15) 

( ),
upper critical

CI x t SE= +   (16) 

where x  is the sample mean, SE is the standard 

error of the mean, and 
critical

t  is the critical value of 

the t-distribution corresponding to the chosen 

confidence level and degrees of freedom [23]. 

 
 
Correlation coefficients 

The Pearson correlation coefficient measures 

the level of linear correlation between two 

continuous variables [24]. It indicates how closely 

the data points align to a straight line, representing 

the degree of linear association [25]. The formula to 

calculate the Pearson correlation coefficient between 

two variables X and Y is as Eq. (17). 

2 2

( )( )

( ) ( )

i i

xy

i i

X X Y Y
r

X X Y Y

− −
=

− −



 
  (17) 
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where 
xy

r  is the Pearson correlation coefficient 

between X and Y. 
i

X  and 
i

Y  are individual data 

points of X and Y, respectively. X   and Y  are the 

means of X and Y, respectively. The Pearson 

correlation coefficient ranges from -1 to 1, in which 

[26]: A value of 1 indicates a perfect positive linear 

relationship; A value of -1 indicates a perfect 

negative linear relationship; A value of 0 indicates 

no linear relationship between the variables. 

Meanwhile the Spearman correlation 

coefficient, also known as rank correlation, assesses 

the strength and direction of a monotonic 

relationship between two variables [27]. Monotonic 

relationships imply that as one variable increases, 

the other variable either increases or decreases, but 

not necessarily at a constant rate [28]. To compute 

the Spearman correlation coefficient between 

variables X and Y, the data is first converted into 

ranks, and then the Pearson correlation formula is 

applied to the ranked data [29]. The formula for the 

Spearman correlation coefficient between X and Y is 

similar to the Pearson correlation coefficient 

formula, but it uses the ranks of the data,               

see Eq. (18). 

2 2

( )( )

( ) ( )

i i

i i

X X Y Y

xy

X X Y Y

R R R R

R R R R


− −

=

− −



 
 (18) 

 

where 
xy

   is the Spearman correlation coefficient 

between X and Y. 
i

X
R  and 

i
Y

R  are the ranks of the 

individual data points of X and Y, respectively. X
R  

and Y
R  are the means of the ranks of X and Y, 

respectively. The Spearman correlation coefficient 

also ranges from -1 to 1, with similar interpretations 

as the Pearson coefficient. 

As shown in Fig. 6, this research employed 

both Pearson and Spearman correlation coefficients 

to assess the relationships between the 

concentrations of I-131, Cs-134, and Cs-137. The 

Pearson coefficient measured linear relationships, 

while the Spearman coefficient measured monotonic 

relationships based on ranked data [30]. The 

correlation coefficients were interpreted to 

determine the strength and direction of the 

relationships between the variables [11]. 

 

Fig. 6. R-Studio programming language for pearson and 

spearman coefficient correlation analysis. 

Chi-Square methods 

The Chi-Square test is a statistical method 

used to evaluate whether there is a significant 

association or relationship between two categorical 

variables in a given dataset [31]. It is widely used in 

research to analyze the independence or dependence 

of variables and can be applied to various fields, 

such as biology, social sciences, and more [32].  

The objective of the Chi-Square test is to 

determine if there is a significant association 

between two categorical variables in the dataset 

[33]. Set up null and alternative hypotheses to be 

tested. The null hypothesis (H0) assumes that there is 

no association between the two variables, while the 

alternative hypothesis (H1) assumes that there is a 

significant association between them [34]. Create a 

contingency table to display categorical variable 

combinations' frequencies. Calculate expected 

frequencies assuming no association                    

(null hypothesis). These represent expected 

frequencies with no variable relationship. The      

Chi-Square statistic 2
( )  is calculated by comparing 

the observed frequencies in the contingency table to 

the corresponding expected frequencies [35].                  

It measures the discrepancy between the observed 

and expected frequencies. The degrees of freedom in 

the Chi-Square test depend on the dimensions of the 

contingency table. For a 2x2 table, df = 1; but for 

larger tables, it is calculated as 

(rows 1) (columns 1)−  − . With the Chi-Square 

statistic and degrees of freedom, we can determine 

the critical value from the Chi-Square distribution 

table or use it to calculate the p-value [36].           

The p-value represents the probability of obtaining 

results as extreme or more extreme than what was 

observed, assuming that the null hypothesis is true 

[18]. By comparing the p-value to a chosen 

significance level (commonly 0.05), we can decide 

whether to reject the null hypothesis or not [18].      

If the p-value is smaller than the significance level, 

we reject the null hypothesis and conclude that    

there is a significant relationship between the 

variables [34]. If the p-value is larger than the 

significance level, we fail to reject the null 

hypothesis, indicating that there is no significant 

association [37]. 

In Fig. 7, the Chi-Square test is a valuable tool 

for analyzing the relationship between categorical 

variables in research [35]. It helps researchers 

determine whether there is a significant association 

between the variables under investigation. Proper 

interpretation of the test results and consideration of 

data limitations and assumptions are crucial for 

drawing meaningful conclusions from the            

Chi-Square test [38]. 
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Fig. 7. R-Studio programming language for Chi-Square 

statistical analysis. 

 

 

Factor analysis method 

Factor Analysis is a statistical method used to 

identify underlying patterns or factors that explain 

the associations between variables in a dataset [39]. 

This technique helps reduce the dimensionality of 

data and identify the main factors that can account 

for the variability in observed variables [40].        

The methodology used in this study can be 

summarized as follows. 

The study involved three variables, namely        

I-131, Cs-134, and Cs-137. Measurements were 

taken to determine the associations between these 

variables. The data used in Factor Analysis is often 

standardized to ensure that variables have the same 

scale [41]. In this case, the standardized loadings, h2, 

and u2 values were used to analyze the relationships 

between factors and variables [42]. Standardized 

loadings are standardized coefficients that indicate 

the strength of the relationship between variables 

and underlying factors [43]. For each variable, 

standardized loadings were obtained with respect to 

each factor. h2 represents the common variance 

explained by variables with respect to factors, while 

u2 represents the unique variance not explained      

by variables [44]. These values provide insights into  

the extent to which variables explain the          

variability in factors.  

Common variance (com) is the total shared 

variance explained by factors [39]. For each factor, 

the common variance was calculated [39]. The 

"minres" method was employed to identify two main 

factors (MR1 and MR2) underlying the associations 

between the observed variables [45]. MR1 and MR2 

have different factor loadings, h2, and u2 values.   

The model was evaluated using various       

goodness-of-fit measures, including objective 

function, chi-square value, root mean square of 

residuals (RMSR), and Tucker Lewis Index of 

factoring reliability [46]. This condition is         

shown in Fig. 8. 
 

 

Fig. 8. R-Studio programming language for factor analysis. 

MR1 and MR2 is the two main factors 

underlying the associations between the observed 

variables. 
1 2 3 4 5 6

2 , 2 , 2 , 2 , 2 , 2
i i i i i i

h h h h h h  is standardized 

loadings for variables I-131, Cs-134, and Cs-137 

with respect to MR1 and MR2. 

1 2 3 4 5 6
2 , 2 , 2 , 2 , 2 , 2

i i i i i i
u u u u u u  is unique variances for 

variables I-131, Cs-134, and Cs-137 not explained 

by MR1 and MR2. 
1MR

com  and 
2

MR
com is common 

variance explained by MR1 and MR2, respectively. 

For each variable i (in this case, I-131, Cs-134, and 

Cs-137) with respect to each factor (MR1 and MR2), 

we have standardized loadings:
1

2
i

h  is standardized 

loading for variable i with respect to MR1; 2
2

i
h  is 

standardized loading for variable i with respect to 

MR2. For each factor (MR1 and MR2), we calculate 

the common variance as the sum of squared 

standardized loadings for the variables associated 

with that factor, see Eqs. (19,20)  [45]. 

2 2 2

1 131 134 137
2 2 2

MR I Cs Cs
com h h h= + +  (19) 

2 2 2

2 131 134 137
2 2 2

MR I Cs Cs
com h h h= + +  (20) 

For each variable i (in this case, I-131, Cs-

134, and Cs-137), we calculate the unique variance 

as the difference between 1 and the sum of the 

squared standardized loadings for that variable with 

respect to both factors, See Eqs. (21-23). 

2 2

131 131 131
2 1 ( 2 2 )

I I I
u h h= − +  (21) 

2 2

134 134 134
2 1 ( 2 2 )

Cs Cs Cs
u h h= − +  (22) 

2 2

137 137 137
2 1 ( 2 2 )

Cs Cs Cs
u h h= − +  (23) 

Objective Function is the function used to 

optimize the factor analysis process [47]. Chi-square 

value is a measure of the discrepancy between the 

observed and expected covariance matrices [48]. 

Root Mean Square of Residuals (RMSR) is a 

measure of the differences between the observed and 

reproduced correlation matrix [49]. Tucker Lewis 

Index of Factoring Reliability is a measure of how 

well the factor analysis model reproduces the input 

data's covariance matrix [50]. 

 

 
Principal component analysis (PCA) and 
canonical correlation analysis (CCA) method 

In this research, two mathematical models, 

namely Principal Component Analysis (PCA) and 

Canonical Correlation Analysis (CCA), were 

utilized to analyze data related to three dimensions 

(Dim.1, Dim.2, and Dim.3) in a specific           
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context [51]. Eigenvalues were a crucial measure 

used in these analyses. 

PCA is a technique used to reduce the 

dimensionality of a dataset while retaining as much 

relevant information as possible [52]. It generates 

new orthogonal components called principal 

components that capture the maximum variance      

in the data. 

PCA is a technique used to reduce the 

dimensionality of data while preserving the most 

important information [53]. The study's main 

objective is to discover principal components, such 

as Dim.1, Dim.2, and Dim.3, which are linear 

combinations of the original variables, effectively 

explaining the most variance in the data, as 

determined by the Eigenvalues analysis [54]. 

CCA is a statistical method used to explore 

the relationships between two sets of variables [55]. 

The goal is to identify optimal linear combinations 

of two variable sets (isotopes and independent 

variables) with the highest correlation, particularly 

focusing on dimensions Dim.1, Dim.2, and Dim.3 in 

CCA analysis. As shown in Fig. 9, this study 

evaluates their roles in elucidating the relationship 

between isotope I-131 and the independent 

variables, Longitude and Latitude. 

 

Fig. 9. R-Studio programming language for principal component 

analysis (PCA) and canonical correlation analysis (CCA). 

 
In this research, PCA was utilized to analyze 

data related to three dimensions (Dim.1, Dim.2,    

and Dim.3) in a specific context. It is used to    

reduce the dimensionality of a dataset while 

retaining as much relevant information                    

as possible [53]. 

PCA starts with data preprocessing to 

standardize the data [56]. Each variable in the 

dataset is transformed to have zero mean and unit 

variance. The standardization formula for a variable 

ij
x  is as Eq. (24). 

ij j

ij

j

x
x





−
=  (24) 

where 
ij

x   is the value of the j-th variable in the i-th 

data point, 
j

  is the mean of the j-th variable, and 

j
  is the standard deviation of the j-th variable.  

After standardization, the covariance matrix C 

is calculated [57]. The covariance matrix represents 

the relationships between variables and is        

defined as Eq. (25). 

1

1 n
T

i i

i

C x x
n =

=   (25) 

where n is the number of data points, and 
i

x  is the 

standardized data vector for the i-th data point.  

Next, PCA performs eigenvalue 

decomposition on the covariance matrix C to find its 

eigenvalues 
1 2

( , , , )
m

     and corresponding 

eigenvectors 
1 2

( , , , )
m

v v v . PCA then sorts the 

eigenvalues in descending order and selects the top k 

eigenvectors associated with the k largest 

eigenvalues [58]. These eigenvectors are the 

principal components that capture the maximum 

variance in the data. The original data is projected 

onto the selected k principal components to obtain 

the reduced-dimensional representation [59]. For the 

i-th data point, the reduced representation 
i

z  is 

calculated as Eq. (26). 

1

2

  

i

i

i

ik

i k

z

z
z

z

x V

=

= 

 
 
 
 
 
 

 (26) 

where 
i

z  is the k-dimensional vector representing 

the i-th data point in the reduced space, 
i

x  is the 

original data point, and 
k

V  is the matrix containing 

the selected k eigenvectors.  
In this research, Canonical Correlation 

Analysis (CCA) was utilized to explore the 
relationships between two sets of variables:    
isotopes (Dim.1, Dim.2, Dim.3) and independent 
variables (Longitude and Latitude). Similar             
to PCA, CCA starts with data preprocessing to 
standardize both sets of variables (X and Y)            
to have zero mean and unit variance [60].            
CCA then calculates the cross-covariance         

matrix 
xy

C  between the two standardized datasets    

X and Y. The cross-covariance matrix is defined    
as Eq. (27). 

1

1 n
T

xy i i

i

C x y
n =

=   (27) 

where n is the number of data points, 
i

x  is the 

standardized isotopes vector for the i-th data point, 
and 

i
y  is the standardized independent variables 

vector for the i-th data point.  
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Next, CCA performs eigenvalue 

decomposition on the cross-covariance matrix 
xy

C  to 

find its eigenvalues 
1 2

( , , , )
k

    and corresponding 

eigenvectors 
1 2

( , , , )
k

a a a  [61]. CCA then sorts the 

eigenvalues in descending order and selects the top l 

eigenvectors associated with the l largest 

eigenvalues [62]. These eigenvectors represent the 

canonical correlation components [63]. CCA 

computes the canonical variables for both X and Y 

using the selected l eigenvectors [64]. For the i-th 

data point, the canonical variables 
i

u  and 
i

v  are 

calculated as Eqs. (28,29). 

1

2

   

i

i

i

il

i l

u

u
u

u

x A

=

= 

 
 
 
 
 
 

 (28) 

1

2

   

i

i

i

il

i l

v

v
v

v

y B

=

= 

 
 
 
 
 
 

 (29) 

where 
i

u  and 
i

v  are l-dimensional vectors 

representing the i-th data point in the reduced space 

for X and Y, respectively; 
i

x  is the isotopes data 

point, 
i

y  is the independent variables data point; 

and 
l

A  and 
l

B  are the matrices containing the 

selected l eigenvectors. 

 

 
RESULTS AND DISCUSSION 

Time series graphs of I-131, C-s134 and      
C-s137 in several locations 

In this research, the author analyzed data  

from the 'DE.xlsx' file to track the evolution            

of  radioactive isotopes (I-131, Cs-134, and          

Cs-137) formed during nuclear reactions.             

The data underwent multiple processing           

stages, including handling missing values             

and converting columns. Time series plots          

were then created to reveal temporal trends           

and changes in radioactivity levels, offering    

valuable insights into these isotopes' behavior     

over time. Time series graphs of I-131, Cs-134 and 

Cs-137 in several locations are shown in Fig. 10. 

The research findings provide valuable 

insights into the historical trends of radioactive 

isotopes, enhancing our understanding of their 

patterns, characteristics, and potential  

environmental and human health impacts.           

Data processing techniques ensure result      

accuracy and reliability, while the graph         

displays isotope level trends at different       

locations over time, likely related to          

monitoring radiation effects from nuclear          

incidents or tests. 

 
  

 
 

Fig. 10. Time series graphs of I-131, Cs-134 and Cs-137 in several locations. 
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Regression analysis of each isotope 

This analysis examines the relationship 

between the dependent variable I-131 and the 

independent variables Longitude and Latitude.     

The linear regression model used in the analysis is  

as Eq. (30). 

𝐼131 = 18.94480 + 0.32541 ⋅ Longitude

− 0.41650 ⋅ Latitude 
(30) 

The intercept of the model is 18.94480, and it 

is statistically significant with a p-value of  
5

5.69 10
−

 . The coefficient for Longitude is 0.32541, 

suggesting that for each unit increase in Longitude, 

the I-131 value increases by approximately 0.32541 

units. This coefficient is also statistically significant 

with a p-value of 5
2.90 10

−
 . The coefficient for 

Latitude is -0.41650, indicating that for each unit 

increase in Latitude, the I-131 value decreases by 

approximately 0.41650 units. This coefficient is 

statistically significant with a p-value of 6
7.30 10

−
 .  

The goodness of fit of the model is assessed 

using the Multiple R-squared value, which is 0.1402. 

It means that approximately 14.02 % of the 

variability in the I-131 values can be explained by 

the linear relationship with Longitude and Latitude. 

The Adjusted R-squared value is slightly lower at 

0.1331, considering the degrees of freedom and the 

number of variables in the model. The F-statistic 

(19.74) with its associated p-value 8
(1.148 10 )

−
 tests 

the overall significance of the model. Since the       

p-value is very low, we can conclude that the model 

as a whole is statistically significant in explaining 

the variation in I-131. 

Next, this analysis examines the relationship 

between the dependent variable Cs-134 and the 

independent variables Longitude and Latitude.     

The linear regression model used in the analysis is  

as Eq. (31). 

𝐶𝑠134 = 4.455267 + 0.006229 ⋅ Longitude

− 0.085500 ⋅ Latitude 
(31) 

The intercept of the model is 4.455267, and it 

is statistically significant with a p-value of  
5

4.04 10
−

 . The coefficient for Longitude is 

0.006229, indicating that for each unit increase in 

Longitude, the Cs-134 value increases by 

approximately 0.006229 units. However, this 

coefficient is not statistically significant, as the       

p-value is relatively high at 0.724. The coefficient 

for Latitude is -0.085500, suggesting that for each 

unit increase in Latitude, the Cs-134 value decreases 

by approximately 0.085500 units. This coefficient is 

statistically significant with a p-value of 5
6.09 10

−
 .  

The goodness of fit of the model is assessed 
using the Multiple R-squared value, which is 
0.06513. It means that approximately 6.513 % of the 
variability in the Cs-134 values can be explained by 
the linear relationship with Longitude and Latitude. 
The Adjusted R-squared value is slightly lower at 
0.05737. The F-statistic (8.395) with its associated 
p-value (0.0002988) tests the overall significance of 
the model. The p-value is relatively low, indicating 
that the model as a whole is statistically significant 
in explaining the variation in Cs-134. 

Finally, this analysis examines the 
relationship between the dependent variable Cs-137 
and the independent variables Longitude and 
Latitude. The linear regression model used in the 
analysis is as Eq. (32). 

𝐶𝑠137 = 9.10266 + 0.17575 ⋅ Longitude

− 0.20289 ⋅ Latitude 
(32) 

The intercept of the model is 9.10266, and it 
is statistically significant with a p-value of 0.000264. 
The coefficient for Longitude is 0.17575, suggesting 
that for each unit increase in Longitude, the Cs-137 
value increases by approximately 0.17575 units. 
This coefficient is statistically significant with a     

p-value of 5
2.20 10

−
 . The coefficient for Latitude is 

0.20289− , indicating that for each unit increase in 

Latitude, the Cs-137 value decreases by 
approximately 0.20289 units. This coefficient is 

statistically significant with a p-value of 5
3.77 10

−
 .  

The goodness of fit of the model is assessed 
using the Multiple R-squared value, which is 0.1315. 
It means that approximately 13.15 % of the 
variability in the Cs-137 values can be explained by 
the linear relationship with Longitude and Latitude. 
The Adjusted R-squared value is slightly lower at 
0.1243. The F-statistic (18.32) with its associated   
p-value 8

(3.91 10 )
−

  tests the overall significance of 

the model. The p-value is very low, indicating that 
the model as a whole is statistically significant in 
explaining the variation in Cs-137. 

 

 

Descriptive analysis 

This research investigated the relationships 

between three radioactive isotopes (I-131, Cs-134, 

and Cs-137) and various independent variables. 

Descriptive analysis revealed significant variability in 

the data for each isotope. For I-131, the average value 

was approximately 1.03 with a standard deviation of 

2.72, while Cs-134 had an average value of 

approximately 0.22 with a standard deviation of 0.60. 

Cs-137 showed an average value of approximately 

0.54 with a standard deviation of 1.44. These findings 

provide valuable insights into the characteristics of 

these isotopes. This condition is shown in Fig. 11. 
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Fig. 11. Descriptive analysis bar diagram (mean, median, mode, 

standard deviation, variance, minimum, maximum, Q1, and Q3). 

 
 

One sample t-test 

The research aimed to test hypotheses regarding 

three isotopes: I-131, Cs-134, and Cs-137. The method 

employed for this study was the One Sample t-test.    

The following are the research results for each isotope. 
As shown in Table 2 and Fig. 12, the sample 

mean (mean of x) for the I-131 isotope was 1.033983. 
The t-statistic value was 5.9408, with degrees of 
freedom (df) equal to 244. The p-value obtained from 
the test was 9.723e-09 (extremely small). The 95 % 
confidence interval for the true mean of the I-131 
isotope was between 0.6911542 and 1.3768123. 

The sample mean (mean of x) for the Cs-134 
isotope was 0.2195755. The t-statistic value was 
5.7096, with degrees of freedom (df) equal to 243. 
The p-value obtained from the test was 3.29e-08 
(extremely small). The 95 % confidence interval for 
the true mean of the Cs-134 isotope was between 
0.1438232 and 0.2953278. 

The sample mean (mean of x) for the Cs-137 
isotope was 0.5363785. The t-statistic value was 
5.8241, with degrees of freedom (df) equal to 244. 
The p-value obtained from the test was 1.803e-08 
(extremely small). The 95 % confidence interval for 
the true mean of the Cs-137 isotope was between 
0.3549726 and 0.7177844. 

The results of the research indicated that the 
sample means for all three isotopes (I-131, Cs-134, 
and Cs-137) were significantly different from zero. 
The extremely small p-values obtained suggest 
strong evidence against the null hypothesis, 
indicating that the means of these isotopes are 
significantly different from the hypothesized values. 
The narrow 95 % confidence intervals also provide  
a precise estimate of the true means of each isotope. 

 
Table 2. Statistical analysis of isotope data: t-values, degrees of 

freedom, p-values, 95 % confidence intervals, and sample means. 

Isotope t-value 
Degrees of 

Freedom 
p-value 

95 % Confidence 

Interval 

Sample 

Mean 

I131 5.9408 244 9.72E-09 (0.6911542, 1.3768123) 1.033983 

Cs134 5.7096 243 3.29E-08 (0.1438232, 0.2953278) 0.219576 

Cs137 5.8241 244 1.80E-08 (0.3549726, 0.7177844) 0.536379 

 
Fig. 12. The T-Values test results for sample means with 

confidence intervals. 

 

Based on the test results, it can be concluded 

that the p-value is very small for the three isotopes, 

namely I-131, Cs-134, and Cs-137. Therefore, the 

null hypothesis stating that the true mean of these 

three isotopes is 0 can be rejected. This means there 

is strong evidence to state that the true mean of these 

isotopes is not 0 and has statistically significant 

values. The 95 % confidence interval also provides 

an estimated range of values for the true mean of 

each isotope. 

 

 

Pearson correlation coefficients 

The Pearson correlation coefficient quantifies 

linear relationships between variables in Fig. 13, 

ranging from -1 (perfect negative) to 1 (perfect 

positive). I-131 and Cs-134 have a moderate positive 

correlation (0.56), I-131 and Cs-137 show a strong 

positive correlation (0.85), and Cs-134 and Cs-137 

exhibit a moderate positive correlation (0.57). 

Spearman correlation, measuring monotonic 

associations, also ranges from -1 to 1. For I-131 and 

Cs-134, it's a very weak positive correlation (0.10);     

I-131 and Cs-137 display a moderate positive 

correlation (0.50); and Cs-134 and Cs-137 have a 

very weak to no correlation (-0.02) based               

on ranked data. 

 

 
Fig. 13. Heatmap correlation using spearman and person methods. 

 
 

Chi-square test 

In this research, we conducted a Chi-Square 

test for three isotopes: I-131, Cs-134, and Cs-137. 
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As shown in Fig. 14, the Chi-Square test was 

performed to evaluate whether there is a relationship 

or association between the observed variables in the 

data. For the I-131 isotope, the Chi-Square test 

resulted in an X-squared value of 3074.3 with 

degrees of freedom (df) equal to 2544, and a p-value 

of 1.453e-12. The extremely small p-value indicates 

a significant relationship between the observed 

variables in this data. On the other hand, for the 

Cs134 isotope, the Chi-Square test yielded an        

X-squared value of 1633.3 with df equal to 1824, 

and a p-value of 0.9995. In this case, the p-value 

approaching 1 indicates that there is no significant 

relationship between the observed variables in the 

data. Moving on to the Cs-137 isotope, the           

Chi-Square test resulted in an X-squared value of 

2625.5 with df equal to 2256, and a p-value of 

8.173e-08. Similar to the I-131 isotope, the very 

small p-value suggests a significant relationship 

between the observed variables in this data. 

 

 
Fig. 14. Chi-square test results for different isotopes    

(pearson’s chi-squared test). 

 

 

Factor analysis 

In Fig. 15, the study explored the connections 

between two factors, MR1 and MR2, and three 

variables, I-131, Cs-134, and Cs-137. It revealed the 

strength of these associations through standardized 

loadings: 0.71 for I-131, 0.57 for Cs-134, and 0.69 for 

Cs-137 in MR1, and 0.42 for I-131, 0.45 for Cs-134, 

and 0.62 for Cs-137 in MR2. The h2 values indicated  

the proportion of variance explained by the variables, 

with MR1 at 0.84 and MR2 at 0.38. Cs-137 had a 

strong relationship with its factor, with an h2 value of 

0.86. Additionally, unique variances (u2) were 

determined for MR1 (0.16) and MR2 (0.62), with 

Cs137 having a u2 value of 0.14. Common variances 

(com) were calculated as 1.9 for MR1 and 2.0 for 

both MR2 and Cs-137. This analysis provides 

valuable insights into the data's underlying structure           

and associations. 

 

 
Fig. 15. Standardized loadings (pattern matrix). 

 

The Fig. 16, presents the results of a Factor 

Analysis using the "minres" method with two 

factors, MR1 and MR2. It highlights factor loadings, 

variance explained, and cumulative variance. MR1 

has factor loadings from 0.39 to 1.16, explaining    

39 % of the variance, while MR2 has loadings from 

0.31 to 0.92, explaining 31 % of the variance. When 

combined, they collectively explain 69 % of the 

variance. This analysis reveals crucial insights     

into the dataset's underlying structure and      

variable relationships. 

      
 

 
 

Fig. 16. Factor loadings, proportion var, and cumulative var.  

 
As shown in Fig. 17, in effective research, 

factor analysis typically starts by establishing           

a null model, assuming no underlying factors          

in the data. Researchers then compare this null 

model with a 2-factor model to assess                        

if adding factors significantly enhances  model fit. 

The null model, with 3 degrees of freedom,            

has an objective function value of 1.68 and               

a chi-square value of 409.39. In contrast, the           

2-factor model, which is overidentified, aims to 

minimize the objective function to zero for               

a perfect fit. Interpreting these results carefully is 

crucial, as a perfect fit like the one observed here is 

uncommon in practice. Researchers may also 

consider other fit indices for a comprehensive                   

model assessment. 
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Fig. 17. Minres method indicate that two main factors can be 

identified from the data used. 

 

   

 
Fig. 18. Measures of factor adequacy. 

 

As shown in Fig. 18, the research findings 

using factor analysis with the minres method reveal 

two main factors, labeled as MR1 and MR2. MR1 

shows a strong correlation of 0.73 with regression 

scores, explaining about 53 % of the score variation. 

MR1 also has minimal correlations with other 

factors, making it conceptually distinct. On the other 

hand, MR2, with a correlation of 0.64, explains 

around   40 % of score variation but is closely 

related to other factors, as indicated by its negative 

correlation. These factors offer valuable insights into 

the data relationships, but interpreting them should 

consider the context and research objectives. 

The pattern matrix from the correlation matrix 

revealed significant associations between variables 

and factors. Factor MR1 exhibited strong 

connections with I-131 (0.71) and Cs-137 (0.69), 

and a moderate one with Cs-134 (0.42). Factor MR2 

displayed substantial links with Cs-134 (0.45) and 

Cs-137 (0.62), and a somewhat lower one with        

I-131 (0.57). 

 

 
Fig. 19. Aditional information radar plot: values for       

differents metrics. 

 

The h2 values show that factors explain a 

significant portion of variance in observed variables. 

Factor MR1 accounts for 84 % of the variance, 

while Factor MR2 explains 86 %. Low u2 values 

indicate minimal unexplained variance, suggesting a 

good model fit. Communalities for variables are    

1.9 (I-131) and 2.0 (Cs-134 and Cs-137). The table 

provides vital data on factor loadings, variance, and 

cumulative variance. MR1 has a sum of squares 

loadings of 1.16, explaining 39 % of the variance, 

while MR2 accounts for 31 %. Together, they 

explain 69 % of the variance. Statistical tests 

confirm the model's goodness-of-fit, with perfect fit 

indicators and a strong factor relationship. The 

factors are distinct and reliable, explaining 53 % 

(MR1) and 40 % (MR2) of the variance in scores. 

Low correlations between factor scores support their 

distinctiveness (0.07 for MR1, -0.19 for MR2). This 

condition is shown in Fig. 19. 

 

 

Principal component analysis (PCA) and 
canonical correlation analysis (CCA) 

This research focused on analyzing the 

Eigenvalues of three dimensions (Dim.1, Dim.2, and 

Dim.3) within a specific context. The findings 

revealed that Dim.1's Eigenvalue of 2.323, with a 

variance percentage of 77.440 %, plays a significant 

role in representing the data. Dim.2, with an 

Eigenvalue of 0.524 (17.473 % of total variance), 

also contributes to data variability. Dim.3, though 

smaller, holds significance with an Eigenvalue of 

0.153 (5.088 % of total variance). Cumulatively, 

Dim.1 and Dim.2 encompass 94.912 % of data 

variability, while Dim.3 completes the cumulative 

variance to 100.000 %, effectively capturing the 

entire data variability in this research. 
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Fig. 20. Eigenvalues variance and cumulative percentage of 

varianced.  
 

As shown in Fig. 20, this research employed 

Principal Component Analysis (PCA) and Canonical 

Correlation Analysis (CCA) to explore the 

connection between isotopes and geographical 

factors (Longitude and Latitude). In Fig. 21, PCA 

revealed two main components, Dim.1 and Dim.2, 

explaining 48.8 % of isotopic variation. Dim.1 

clarified 28.8 % of the variation with a 1.5 % ctr and 

13.1 % cos2. Dim.2 explained 23.1 % of the 

variation with a 2.4 % ctr and 18.4 % cos2. Dim.3, 

though generated by PCA, only explained 6.7 % 

with a 0.5 % ctr and 39.6 % cos2. The cumulative 

variance explained by Dim.1 and Dim.2 is around 

48.8 %. CCA examined the relationship between 

isotopes and Longitude/Latitude, involving            

10 individuals or data points. Dist represents the 

distance to the CCA center. Dim.1, Dim.2, and 

Dim.3 are CCA components. For each individual, 

CCA values and component variables are provided. 

CCA value indicates the association with each 

component, ctr reveals variation explanation, and 

cos2 shows the proportion of variance explained. 

This research utilized multivariate analyses, 
including Principal Component Analysis (PCA) and 
Canonical Correspondence Analysis (CCA), to 

investigate the associations between radioactive 
isotopes and geographic variables like Longitude 
and Latitude. In Fig. 22, PCA Dimension 1 (Dim.1) 
explained 92.3 % of the variability in isotope I-131, 

with a strong correlation (cos2 = 0.851). Dim.2               
and    Dim.3 had weaker relationships (cos2 = 0.074 
and 0.075, respectively). In CCA, Dim.1   

contributed 36.6 % and had a strong correlation     
(ctr = 0.923) with isotope I-131. Dim.2 and       
Dim.3 had lower relationships (ctr = -0.271 and 

0.274). PCA analysis on Cs-134 and Cs-137   
showed weaker correlations in the second             
and third principal components. 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21. CCA results graph. 

 

 

   
Fig. 22. Scree plot for CCA for proportion of variance explained by each dimension and canonical correspondence analysis in 

coordinat plot. 
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In this study, a comprehensive analysis of the 

behavior and relationships of three radioactive 

isotopes (I-131, Cs-134, and Cs-137) over time was 

conducted. Data from the "DE.xlsx" file was utilized 

to depict the progression of these isotopes. Time 

series graphs revealed trends and temporal variations 

in radioactivity levels at various locations. These 

visualizations offer valuable historical insights into 

the behavior of these radioactive isotopes, with 

potential implications for the environment and 

human health. 

Regression analysis investigated the 

relationship between radioactive isotope levels 

(dependent variable) and geographic coordinates, 

Longitude, and Latitude (independent variables). 

The results revealed statistically significant 

associations between Longitude, Latitude, and the 

levels of I-131 and Cs-137, indicating a geographic 

factor in their distribution. However, Cs-134 did not 

show a statistically significant relationship with 

Longitude, suggesting unique characteristics. 

Descriptive analysis provided important 

statistical metrics for all three isotopes, including 

mean, median, mode, standard deviation, variance, 

minimum and maximum values, and quartiles. These 

statistics offer a comprehensive view of the 

distribution and variability of these isotopes. 

One-sample t-tests aimed to assess whether 

the mean isotopic values significantly differed from 

zero. Very low p-values indicated strong evidence 

against the null hypothesis, confirming that the 

isotopes have statistically significant mean values. 

Precise confidence intervals provided accurate 

estimates of the true means for each isotope. 

Pearson and Spearman correlation coefficients 

revealed varying levels of correlation between 

isotopes, indicating diverse degrees of association. 

This information sheds light on the interactions 

between these isotopes. 

Chi-Square tests evaluated relationships 

among observed variables (isotopes) in the dataset. 

Significant relationships were found for I-131 and 

Cs-137, indicating their interrelated behavior. 

However, Cs-134 did not show a significant 

relationship, signifying its unique behavior. 

Factor analysis aimed to identify underlying 

factors (MR1 and MR2) and their relationships with 

the isotopes. Standardized loadings, h2 values,       

u2 values, and common variance provided insights 

into the strength and relationships of these factors. 

The analysis revealed two primary factors (MR1 and 

MR2) explaining a significant portion of the 

variance in isotopes. 

Principal Component Analysis (PCA) and 

Canonical Correlation Analysis (CCA) were 

employed to assess the relationships between 

isotopes and geographic variables (Longitude and 

Latitude). Eigenvalues and variance percentages 

highlighted the importance of each dimension in 

explaining data variability, while CCA revealed the 

extent to which isotopes were associated with 

independent variables. 

This research extends previous studies by 

offering a deeper and more comprehensive analysis 

of the behavior and relationships of these radioactive 

isotopes. It provides new insights into their 

associations with geographic factors, correlations 

between isotopes, and underlying factors influencing 

their behavior. These findings contribute to a deeper 

understanding of isotopic behavior and its 

implications, making it a valuable addition to the 

existing knowledge in this field. 

 
 

CONCLUSION 

In conclusion, this study provides a 

comprehensive analysis of changing radioactivity 

levels of isotopes (I-131, Cs-134, and Cs-137) at 

various locations over time. The research revealed 

significant associations between I-131 and Cs-137 

levels with Longitude and Latitude, emphasizing the 

role of environmental factors in their distribution. 

Descriptive statistics, one-sample t-tests, Pearson 

and Spearman correlation coefficients, and Chi-

Square tests all confirmed the statistical significance 

and relationships among the isotopes. Factor 

analysis identified two key factors (MR1 and MR2) 

driving isotopic variations, shedding light on the 

forces shaping radioactivity distribution. The 

integration of PCA and CCA provides a 

comprehensive approach to understanding isotopes 

in relation to independent variables, offering 

valuable insights for future research.  

Furthermore, the study underscores the 

importance of establishing a robust environmental 

monitoring system to track radioactive isotopes in 

various locations, enabling timely detection of 

changes in radioactivity levels. This is particularly 

crucial in areas with higher isotopic concentrations, 

as it allows for health impact assessments and 

effective risk communication strategies to inform the 

public about potential risks. Further research should 

delve into the specific impacts of geographic 

features on individual isotopes, given their varying 

correlations, and explore the nature and significance 

of the factors influencing isotopic variations. These 

findings lay the groundwork for a deeper 

understanding of the complex interactions    

involved in radioactivity distribution and 

environmental monitoring. 
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