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 The nuclear ground-state properties of Samarium (Sm) isotopes are calculated and 

analyzed using an improved mass formula. The asymmetric energy term is 

consistently observed, separated into a volume and surface component. While 

distinctive signatures for certain isotopes remain elusive, the results show 

reasonable agreement with experimental data and well-established theoretical 

models such as the Relativistic-Continuum-Hartree-Bogoliubov (RCHB) and the 

Finite Range Droplet Model (FRDM). By utilizing a root-mean-square (rms) 

charge radius formula that incorporates both shell and deformation effects, the 

study provides new insights into the anomalous shifts observed in magic isotopes 

(N=82, N=126), as well as in N=92, 136, and 144 within the isotopic series of the 

"Sm" element. 

© 2025 Atom Indonesia. All rights reserved 

   

INTRODUCTION 

The rare earth element Samarium (Z=62) is 

distinguished by its unique combination of physical, 

chemical, and radioactive properties. It has emerged 

as a versatile element with applications in medical 

advancements [1], nuclear energy [2], and green 

chemistry [3,4]. Samarium-153 is one of the three 

radio-nuclides recently approved for the treatment of 

bone pain, while Samarium-149 [2], due to its 

excellent neutron absorption properties, is used in 

nuclear control rods. Recent studies [4] on a 

Samarium complex [Sm-bis (PYT) on boehmite 

nanoparticles] have also demonstrated its potential 

as a practical, stable, and recyclable nanocatalyst. 

Further research to explore more stable isotopes of 

this element is essential.  

Nuclear masses, as one of the most 

fundamental aspects of nuclear physics, play a 

crucial role in understanding nuclear structures and 

provide insights into the behavior of nuclides far 

from the stability line. Over the years, several 

nuclear mass formulas have been developed to 

deepen the study of these properties. These include 

the classic Bethe-Weizsäcker (BW) type [5] as well 

as formulas based on macroscopic-microscopic 
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models, such as the Finite Range Droplet Model 

(FRDM) [6], alongside microscopic approaches like 

the Hartree-Fock Bogoliubov method [7,8]. These 

formulas account for various factors, including 

isospin asymmetry, shell effects, deformations, and 

nuclear surface diffuseness. The macroscopic-

microscopic mass formula, based on the 

Weizsäcker-Skryme (WS/WS*) models [9,10], 

predicts binding energies with an rms deviation of 

0.323 MeV relative to 2,267 experimental masses. 

Additionally, the uncertainties of the Duflo-Zuker 

formula have also been extensively studied [11]. 

Mass formulas of the classic Bethe-Weizsäcker type, 

such as the one proposed by Spanier and    

Johansson [12], are particularly important for 

incorporating both shell and deformation energies. 

Further modifications [13] of the WS formula, have 

managed to reduce the rms deviation to 0.298 MeV, 

surpassing the 0.3 MeV threshold. 

The complexity of nuclear structures far from 

the stability line, due to deformations and shell 

effects, necessitates the study of another key 

parameter closely influenced by these phenomena: 

the charge radius. Both the liquid drop model 

(LDM) charge radius and the root mean square (rms) 

charge radius play a crucial role in providing an 

accurate description of the nuclear structure and 

enhancing our understanding of nucleus-nucleus 

interactions [14]. Widely accepted microscopic 
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models, such as the relativistic mean field (RMF) 

model [15] and the Skryme-Hartree-Fock-

Bogoliubov (HFB) model [16], successfully 

reproduce charge radii for nuclei with Z>28, with 

rms deviation ranging from 0.0008 to 0.017 fm. 

Additionally, isospin-dependent phenomenological 

formulas [17-19] have been developed to describe 

both charge radii and rms charge radii accurately. 

However, despite their success, these formulas 

provide limited insight into the anomalous behavior 

of certain nuclides related to shell effects.           

Shell effects, associated with specific nucleon 

configurations and represented by neutron (N=2, 8, 

20, 28, 50, 82, 126) and proton magic numbers 

(Z=2, 8, 20, 28, 50, 82), influence deformations in 

nuclides, especially far from the stability line. Thus, 

charge radius and rms charge radius formulas 

incorporating both shell and deformation terms are 

preferred for studies of these phenomena and their 

wider impact on nuclear structures. 

 

 

METHODOLOGY 

In this study, we employ the classic Bethe-

Weizsäcker (BW) mass formula given by Spanier and 

Johansson [12] and the root mean square (rms) charge 

radius formula introduced by Wang and Li, in their 

rapid communication [20] to investigate the nuclear 

structures and ground-state characteristics of several 

Samarium isotopes within the heavy nuclide range    

(A=126 to A=216), far from the valley of stability.  

The Liquid Drop Model (LDM)-based mass 

formula used here is an improvement on the formula 

originally proposed by Johansson [21], with its final 

form being a modification by Spanier and Johansson 

[12]. This formula represents a desired reduction in 

the number of parameters, contrasting with the   

trend at the time, where other mass formulas 

increased the number of free parameters for the sake 

of precision. The first part of the formula 

representing binding energies of the nuclides follows 

the conventional Weizsäcker type, comprising six 

terms as given by Eq. (1). 

 

𝐵. 𝐸. (𝑍, 𝑁) = 𝑎1𝐴 − 𝑎2𝐴
2
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The first three terms represent the volume, 

surface, and coulomb energy, respectively, and are 

expressed through the simplest forms of the 

conventional type. Their corresponding mass 

coefficients are the free parameters a1, a2, and a3, 

defined in Spanier and Johansson [12]. The value     

of a3 is determined using a nuclear radius value of 

r0=1.20 fm, which reproduces the coulomb energies 

accurately [12]. The asymmetric term, however, is 

modified by dividing it into volume and surface 

components, with the surface part including the 

Wigner term, I/A, where I = N – Z. An interim mass 

fit [12] to experimental data provides the optimal 

values for the parameters a4, a5, and a6. For improved 

consistency with nuclear matter calculations, 

especially in line with recent studies based on the 

Bruechner-Hartree-Fock theory [22,23], another 

term of the form I4 is included. The coefficient a7 is 

selected to ensure proper alignment with similar 

theoretical calculations. The coefficient for the 

conventional pairing energy term, a8 is obtained 

following the Bohr and Mottelson model [24]. The 

values of the mass coefficients are given in Table 1. 

 
Table 1. Values of the free parameters in MeV. 

a1 a2 a3 a4 

16.1736 19.8092 0.72004 140.2839 

a5 a6 a7 a8 

2.0956 6.5205 2.7945×10-7 0 (E-E Nuclei) 

11.9977 (Odd Nuclei) 

23.9954 (O-O Nuclei) 

 

The nuclear charge radius, one of the         

basic nuclear properties, can be described by the A1/3 

law, expressed as Rc = r0 A1/3, where r0 is the radius 

coefficient and A is the mass number. Shell effects, 

which refer to the arrangement of nucleons within 

energy levels or shells (analogous to electronic 

shells in atoms), significantly influence the overall 

shape and size of the nucleus. Nuclear deformation 

is another phenomenon strongly impacted by the 

shell structure of nuclides. The study of these 

phenomena, and their effects on parameters such as 

nuclear charge radius, requires formulas that account 

for both shell and deformation effects. The current 

formula (Eq. (2)) given by Wang and Li [20] 

incorporates both the shell correction and 

deformation terms, including quadrupole and 

hexadecapole deformations. Table 2 provides the 

values of coefficients used in Eqs. (2) and (3). 
 

 𝑟𝑐ℎ = √
3

5
𝑅𝑐[1 +

5

8𝜋
(𝛽2

2 + 𝛽4
2)]                   

 

Where β2 and β4 represent the quadrupole and 

hexadecapole deformations, respectively, while Rc is 

expressed as a four-parameter formula for the charge 

radius given by Eq. (3). 

 

𝑅𝑐 = 𝑟0𝐴1/3 + 𝑟1𝐴−2/3 + 𝑟𝑠𝐼(1 − 𝐼) + 𝑟𝛥𝐸/𝐴 

(1) 
(2) 
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Table 2. Values of charge radius and rms charge radius 

formula parameters. The unit for rd is MeV-1fm and the unit for 

other parameters is fm. 

rA r0 r1 rs rd 

1.223 1.226 2.86 -1.09 0.99 

 

The shell correction term (ΔE) and the 

deformation parameters (β2, β4) are derived from the 

WS3 model [13]. This model accounts for the mirror 

nuclei constraint and surface diffuseness, reducing 

the rms deviation of nuclear masses to 0.298 MeV 

relative to 2,149 measured masses. Our use of this 

model is validated by its success in investigations of 

shell corrections, deformations, neutron and proton 

drip lines, and shell gaps. 

 
 

RESULTS AND DISCUSSION 

The nuclear binding energy data obtained 

through computation of Eq. (1) for Samarium 

isotopes, ranging from A=120 to A=216, reveals a 

peak in binding energy per nucleon at neutron 

number N=82. This result is consistent with 

experimental data from the National Nuclear Data 

Center (NNDC) [25], as well as two widely accepted 

theoretical frameworks: the Relativistic-Continuum-

Hartree-Bogoliubov (RCHB) [26] and the finite 

range droplet models (FRDM) [27], alongside the 

conventional BW formula [5]. The consistency 

revalidates the universally recognized concept of 

magic number and shell closure configuration, as 

shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1.  Binding energies per nucleon as a function of neutron 

number for all studied Samarium nuclei. BW F1 denotes the 

conventional BW formula [5] and BW F2 denotes the modified 

formula given by Spanier and Johansson [12]. 

Further analysis of the enhanced stability of 

specific isotopes is conducted using several 

additional parameters. For the calculated binding 

energies, the two-neutron separation energy is 

defined using the RMF formalism [28] as given       

in Eq. (4),  

 

      𝑆2𝑛(𝑍, 𝑁) = 𝐵. 𝐸. (𝑍, 𝑁) − 𝐵. 𝐸. (𝑍, 𝑁 − 2)     

 

Subsequently, we also examine the oscillation 

in one-neutron separation energies [29], defined in 

Eq. (5),  

 
𝐷𝑛(𝑍, 𝑁) = (−1)𝑛[2𝐵. 𝐸. (𝑍, 𝑁) − 𝐵. 𝐸. (𝑍, 𝑁 − 1) 

−𝐵. 𝐸. (𝑍, 𝑁 + 1)]                                     
 

and apply a three-point filter for the binding energy 

[30], as given by Eq. (6), 

 

𝛥1𝑛
(3)

𝐵. 𝐸. (𝑍, 𝑁) =  
1

2
(−1)𝑁[𝐵. 𝐸. [𝑍, 𝑁 + 1] −

                             2𝐵. 𝐸. (𝑍, 𝑁) + 𝐵. 𝐸. (𝑍, 𝑁 − 1)]    
 

The two-neutron separation energies exhibit a 

sharp decline following neutron numbers N=82 and 

126, based on the binding energies acquired from 

FRDM [27] and RCHB [26], as illustrated in        

Fig. 2. This observation aligns with the experimental 

data [25], reinforcing the characteristic energy shifts 

associated with established magic numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Two neutron separation energies as a function of neutron 

number.  
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As shown in Figs. 3 and 4, the data for 

oscillation of one neutron separation energies and 

the three-point difference in binding energies, 

obtained from the NNDC [25] and the two 

theoretical models [26,27], provide valuable insights 

into the enhanced stability at the aforementioned 

neutron numbers. Additionally, anomalous shifts are 

observed at N=92 and N=94, suggesting potential 

for further investigation. However, no such shifts are 

evident in the calculated binding energies. 

This signifies the absence of parameters that 

account for shell effects and nuclear deformations. 

The nuclear charge radius and rms charge radius 

formulas proposed by Wang and Li [20] address 

these limitations by incorporating both these factors. 

To visualize the impact of these two factors, a 

measured approach is required. First, we compute 

the rms charge radii of the aforementioned nuclides 

without considering either parameter followed by 

their successive incorporation. For rms charge radii 

without either parameter, we observe an exponential 

increase, consistent with the A1/3 term of LDM, as 

observed in Fig. 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  One neutron separation energy difference as a function 

of neutron number. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 4. Three-point difference in binding energies as a function 

of neutron number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 5. rms charge radii as a function of neutron number for all 

studied Samarium nuclei without shell correction or deformation 

parameters. 
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The successive incorporation of each 
parameter yields expected results, with the charge radii 
displaying clear local minimum at the specified magic 
numbers. When both parameters are incorporated 
simultaneously, additional insights emerge, revealing 
enhanced stability at neutron numbers N=136 and        
N=144, as illustrated in Figs. 6, 7 and 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. rms charge radii with the shell correction parameter as a 

function of neutron number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 7. rms charge radii (with the deformation parameter) as a 

function of neutron number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. rms charge radii (with both shell correction and 
deformation parameters) as a function of neutron number.  

 

To further analyze these signatures of 

magicity and the other mentioned nuclides, we also 

apply the three-point filter [30] to the rms charge 

radii as defined in Eq. (7), 
 

𝛥1𝑛
(3)

𝑟𝑐ℎ(𝑍, 𝑁) =  
1

2
(−1)𝑁+1[𝑟𝑐ℎ[𝑍, 𝑁 + 1] −

                              2𝑟𝑐ℎ(𝑍, 𝑁) + 𝑟𝑐ℎ(𝑍, 𝑁 − 1)]         
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Three-point charge radii difference as a function of 

neutron number. 

(7) 

39 

 r
c
h
 (

fm
) 

Neutron number 

Exp. [31] 

RCHB [26] 

Eq. (2) (Shell) [20] 

 r
c
h
 (

fm
) 

Neutron number 

Exp. [31] 

RCHB [26] 

Eq. (2) (Shell+Def) [20] 

 r
c
h
 (

fm
) 

Neutron number 

Exp. [31] 

RCHB [26] 

Eq. (2) (Def) [20] 

Δ
rln

 (M
eV

) 

 

Neutron number 

Exp. [31] 

RCHB [26] 

Eq. (2) (Shell+Def) [20] 



 R. R. Swain et al. / Atom Indonesia Vol. 51 No. 1 (2025) 35 - 41 

 

All the calculations employing the current 

formula provide a reasonable agreement with the 

experimental data [31], emphasizing the robustness of 

the current theoretical model as observed in Fig. 9. 
 
 

CONCLUSION 

Nuclear structures and the phenomena that 

influence it remain key areas of research in nuclear 

physics. As studies on the discovery of novel stable 

isotopes for experimental and practical applications 

accelerate, our work re-affirms the significance of 

two crucial factors, shell effects, and nuclear 

deformations, in the accurate determination of 

nuclear ground state properties.  The rms charge 

radii calculations, incorporating shell and 

deformation terms either successively or 

concurrently, reveal signatures of enhanced nuclear 

stability at neutron numbers N=92, N=136, and       

N=144, in addition to the well-established magic 

isotopes. Similar studies on nuclear structure, though 

applied to different isotopic chains, have also been 

carried out using RMF formalism [32], providing 

complementary perspectives on stability trends. 

However, the LDM based mass formula offers 

limited insight in this regard, suggesting 

opportunities for further investigations. 
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