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 Brain tumors are abnormal tissue growths in the brain. These brain tumors can 

have a negative impact on human health, one of which can interfere with brain 

functions such as vision, balance, and so on. Therefore, early detection needs to be 

done, one of which is by using medical imaging modalities, i.e., MRI. However, 

analyzing MRI scans requires careful observation and a high level of proficiency. 

Thus, medical image segmentation is required. Segmentation is important in 

medical image analysis as it allows medical experts to distinguish between 

abnormal and normal tissues. This study aims to determine the ability of the swin 

transformer architecture in segmenting brain tumor MR images. The image data 

used was BraTS 2021 data with a total of 1,250 images. The data were divided 

into three, i.e., training set, validation set, and testing set with a ratio of 70:15:15. 

Swin Transformer provided two main concepts, i.e., hierarchical feature maps and 

attention window shifts. The Swin Transformer initially was divided the image 

into small patches, which were then converted into vector form. After that, it was 

passed through W-MSA for local area and SW-MSA for cross window area.   

Next, multiple patches were merged into one, so that the image resolution 

gradually decreased, and then restored back to the original resolution. Based on 

this, the segmentation results were evaluated using a confusion matrix using DSC, 

IoU,   and sensitivity metrics. The results of brain tumors MR image segmentation 

with Swin Transformer obtained evaluation values, i.e., 0.97313 for DSC, 0.94767 

for IoU, and 0.96450 for sensitivity. It can be concluded that the Swin Tranformer 

can effectively segment brain tumor MR images. 
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INTRODUCTION 

Brain tumors are abnormal tissue growths in 

the brain that originate in the brain or meninges     

[1-7]. Brain tumors can negatively affect human 

health and disrupt brain functions, such as speech, 

vision, balance, motor, cognitive, and health 

behavior. Therefore, it is important to be aware of 

the symptoms of a brain tumor, such as headaches, 

nausea, vomiting, seizures, visual disturbances,    

and impaired balance [8-14]. The survival rate of 

people with brain tumors is relatively low, but it     

can improve greatly if the tumor is detected at        

an early stage. According to WHO data, about 

700,000 people in the world are affected by brain 

tumors every year. In 2019, about 86,000 people 

were diagnosed with brain tumors, and 16,830 

people died from brain tumors. The average survival 
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rate for people with brain tumors is about 35 % [15]. 

Early detection of a brain tumor is very 

important because it can increase the chances of 

successful treatment [16-18]. Early detection can be 

done through physical examination and supporting 

examinations, such as Computed Tomography (CT), 

Positron Emission Tomography (PET), and 

Magnetic Resonance Imaging (MRI) [19-23].     

With early detection, treatment can be done earlier 

and more effectively, so the chances of successful 

treatment will be higher [24]. MRI is the first choice 

in brain tumor imaging as it offers more detailed 

images and better contrast compared to other 

medical imaging techniques [25-31]. The technique 

has undergone significant advancements in the last 

two to three decades, making it a very important 

diagnostic tool in the field of oncology [32]. 

However, analyzing MRI scans requires careful 

observation and a high level of proficiency [33-36]. 

This is not possible for a layperson, so only a trained 

radiologist or radiation oncologist can do it properly 
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[34, 37-39]. The main task in brain tumor MR image 

analysis is to identify and delineate abnormal 

regions in the brain before image segmentation [40]. 

Segmentation is important in medical image 

analysis as it allows medical experts to distinguish 

between adjacent tissues in different parts of the 

body [41,42]. Image segmentation is an important 

step towards medical image analysis [43-45].   

Image segmentation plays a major role in digital 

image processing and is used in various fields of 

science, including medical images, for object 

identification and classification [44]. 

Before the advent of Deep Learning (DL) 

methods, various classical approaches were 

developed and widely used for medical image 

segmentation purposes. Mathematical models       

and low-level image processing form the basis for 

many of these techniques. Some of the methods    

that have made significant contributions in           

this field include thresholding, region growing, 

graph truncation, Bayesian approaches, probabilistic 

clustering, and atlas-based methods [46-48]. 

Although these methods have been widely used, 

previous studies still face limitations in segmenting 

complex medical images. For example, thresholding 

methods rely on a fixed threshold value, which is 

less effective in handling high-intensity variations in 

biological tissues. Region growing methods often 

have difficulty in dealing with vague object 

boundaries and are prone to segment leakage.    

Graph cut-based approaches can provide good 

segmentation results but require optimal parameter 

selection and can be computationally expensive. 

Similarly, Bayesian approaches and probabilistic 

clustering require data distribution assumptions that 

often do not match real conditions, resulting in less 

accurate segmentation. Atlas-based methods also 

have limitations in handling high inter-subject 

variation and often require complex and 

computationally expensive registration. In addition 

to these technical challenges, many of these classical 

methods are semi-automated and rely heavily on 

prior knowledge and manual intervention to achieve 

optimal segmentation results. This is a major 

obstacle in clinical applications that require         

high efficiency and consistent accuracy in medical 

image segmentation. 

As an alternative to conventional methods, 

DL-based approaches have emerged as a more 

efficient and accurate solution. In contrast to 

classical methods that often require manual feature 

extraction and complex parameter adjustments,      

DL allows models to learn patterns and features 

directly from the data, reducing reliance on         

rule-based image processing techniques. In addition,    

DL models have the advantage of handling          

high inter-subject shape variation as well as       

tissue   texture complexity better than conventional 

approaches. Advances in DL have brought 

significant  changes in medical image segmentation     

approaches [20,46,49-51]. DL models, particularly 

Convolutional Neural Networks (CNN), have shown 

impressive performance in efficiently extracting 

complex features from image data [46,52-59].       

The transition from systems that use handcrafted 

features of Machine Learning (ML) to systems that 

learn features directly from data (DL) has resulted in 

improved accuracy and efficiency in segmentation 

tasks [46]. However, although CNN has been the 

dominant model, recent developments in Artificial 

Intelligence (AI) architectures have introduced 

promising new approaches, such as Transformers 

and their variations [46,60]. 
A further development of the Transformer is 

the Swin Transformer. Swin Transformer is a very 
interesting AI architecture in the field of computer 
vision. This model was developed by Microsoft 
Research in 2021 [61]. Swin Transformer is built 
using the Transformer concept as its base. However, 
it introduces two key concepts, i.e., hierarchical 
feature maps and attention window shifting [61,62]. 
These two concepts enable Swin Transformer to 
handle large-scale image data efficiently, making     
it a great tool for complex computer vision tasks. 
The hierarchical feature map in Swin Transformer 
helps to effectively represent different levels           
of features in an image. This leads to a more 
comprehensive understanding of the context         
and improved comprehension of the input data. 
Meanwhile, the window attention shifting 
mechanism expands the interaction field of each 
block. Thus, this architecture can capture features 
with varying scales more effectively [61]. 

Medical image segmentation, especially         
in brain tumors, is crucial in diagnosis and   
treatment planning. MR images of brain tumors     
face challenges related to contrast, texture,           
and boundaries between healthy and unhealthy 
tissues. Therefore, an accurate and efficient 
segmentation method is necessary. Several recent 
studies have used various segmentation methods. 
Wang et al. [63] used Transformer to segment     
2019 and 2020 BraTS data, with Dice Similarity 
Coefficient (DSC) results of 0.9000 and 0.9009. 
Aboussaleh et al. [64] used CNN for brain tumor 
segmentation, with a DSC result of 0.8235.      
Kumar [65] compared several methods, including 
CNN, DWT, K-Means Clustering, Level Set 
Method, Watershed Algorithm, and Otsu 
Thresholding, with the best results in CNN 
(accuracy 0.9139, recall 0.8695, precision       
0.9523, and F-measure 0.9090). Hao et al. [66]          
performed Multi-Scale CNN (MSCNN), with an 
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accuracy of 0.8720 on a dataset of 100 and 0.9130 
on a dataset of 400. 

Based on the literature review, various 

methods have been used for brain tumor 

segmentation in MR images, including Transformer, 

CNN, ResNet, DenseUNet+, and GAN. However, 

these results are often limited by model complexity 

and incomplete preprocessing. Research by        

Wang et al. [63] showed the potential of the 

Transformer method in brain tumor segmentation, 

which prompted the authors to explore the           

Swin Transformer as a recent development of           

the Transformer. The Swin Transformer has            

the potential to overcome the limitations of      

previous models with an adaptive approach to 

variations in the scale and structure of medical 

images. This research introduces the Swin 

Transformer architecture with a more 

comprehensive preprocessing approach, which 

includes resizing, filtering, normalization, and 

augmentation. This approach is expected to provide 

superior results compared to previous methods, as 

well as offer a more efficient and accurate solution 

in brain tumor segmentation in MR images. 

The purpose of this research is to evaluate the 

performance of the Swin Transformer in brain tumor 

MR image segmentation using the Dice Similarity 

Coefficient (DSC), Intersection over Union (IoU), 

and sensitivity metrics. The focus is on measuring 

the effectiveness of the model in distinguishing 

tumors from normal brain tissue, with the hope of 

improving segmentation accuracy and efficiency. 

 

 

METHODOLOGY 

In this research, the tools and materials used 

are a laptop equipped with Python software (spyder) 

to process data and the BraTS 2021 (Multimodal 

Brain Tumor Segmentation Challenge 2021) brain 

tumor MR image dataset [67-69] obtained from 

www.kaggle.com. The dataset consists of 1,250 

MRI image data, each of which is original brain 

tumor image data along with annotations or tumor 

masks. The BraTS 2021 data is available in NIfTI 

(.nii) format. All imaging datasets have been 

manually annotated by one to four raters following 

the same annotation protocol. These annotations 

were verified by experienced neuro-radiologists. 

Data collection is the initial stage in this 

research. The dataset collected is an MR image of a 

brain tumor with a data mask. The dataset is divided 

into three sets, i.e., the training set (70 %), validation 

set (15 %), and testing set (15 %). 

Before being used to train the model,         

brain tumor MR image data needs to be processed 

through preprocessing. Some of the preprocessing 

steps are resizing. This ensures that all images have 

the same dimensions, making processing easier.         

Next, image pixel value normalization is     

performed. Normalization is done to homogenize the 

range of pixel values from different images.         

Next, filtering is performed to remove noise and 

improve image quality. Data augmentation is then 

performed to increase the diversity of the dataset    

and prevent overfitting. Data augmentation is         

done with various techniques, i.e., elastic transform, 

horizontal flip, vertical flip, and both horizontal     

and vertical flip. Figure 1 shows an example of 

augmented data. 

The brain tumor segmentation process          

with Swin Transformer architecture starts by 

dividing the MRI image into small parts called 

patches through patch partition. A patch partition 

will break down a large image into small pieces for 

easier processing. 

 

 
 

 

    
 

(f)  (g) 
 

     
(h) (i)  
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Fig. 1.  Augmented images (a) original image,  

(b) elastic transform, (c) horizontal flip, (d) vertical flip,  

(e) both horizontal and vertical flip, (f) histogram of image a,  

(g) histogram of image b, (h) histogram of image c,  

 (i) histogram of image d, and (j) histogram of image e. 
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After that, this collection of small patches      

is converted into vector form through a process 

called linear embedding so that each patch in the 

image has a more structured representation to be   

processed. Then, these image patches go through 

several stages of the Swin Transformer block,   

which has two main components, i.e., Window-

based Multi-head Self-Attention (W-MSA) and 

Shifted Window-based Multi-head Self-Attention 

(SW-MSA). An illustration of the W-MSA process 

can be seen in Fig. 2. 

In the first Fig. 2, it can be seen that self-

attention is performed in small windows arranged    

in a grid. Each green square represents a part of     

the image that is input into the attention window.      

In the W-MSA stage, each window of a certain      

size processes the local information in it without 

regard to other windows. In other words, W-MSA 

groups these green squares into small areas        

where attention is only applied within that window. 

This allows effective processing of local 

information, especially for details within each 

window. In the illustration, the red box inside the 

window highlights the part that gets attention in this 

process. This W-MSA process can be written in the 

following Eqs. (1-2) [61,70,71]. 

 

Ω(𝑀𝑆𝐴) = 4ℎ𝑤𝐶2 + 2(ℎ𝑤)2𝐶 (1) 
 

Ω(𝑊 − 𝑀𝑆𝐴) = 4ℎ𝑤𝐶2 + 2𝑀2ℎ𝑤𝐶 (2) 

 

After W-MSA is applied, SW-MSA is tasked 

with expanding the range of attention by cyclically 

shifting the window, which can be seen in Fig. 3. 

In SW-MSA, the attention window is shifted 

so that the new window position covers a different 

area compared to W-MSA. This shift allows           

the model to see information that was missed or 

hidden between the previous windows, extending    

the attention coverage to the entire image.             

This process combines information from       

multiple windows; and the range of attention is not         

limited to a single window. This cyclic shifting         

of windows gives the model the ability to        

integrate global information from different           

areas of the image. When the window is moved,      

the Swin Transformer can be written as the 

following Eqs. (3-6) [61,71-76]. 
 

�̂�𝑙 = 𝑊 − 𝑀𝑆𝐴 (𝐿𝑁(𝑧𝑙−1)) + 𝑧𝑙−1 (3) 
 

𝑧𝑙 = 𝑀𝐿𝑃 (𝐿𝑁(�̂�𝑙)) + �̂�𝑙 (4) 
 

�̂�𝑙+1 = 𝑆𝑊 − 𝑀𝑆𝐴 (𝐿𝑁(𝑧𝑙)) + 𝑧𝑙  (5) 
 

𝑧𝑙+1 = 𝑀𝐿𝑃 (𝐿𝑁(�̂�𝑙 + 1)) + �̂�𝑙 + 1 (6) 

 
 

Fig. 2. Illustration of the W-MSA process. 
 

 
 

Fig. 3.  Illustration of the SW-MSA process. 

 

 
 

Fig. 4. Illustration of the patch merging process. 

 
After each of these stages, patch merging is 

performed, which can be seen in Fig. 4. 

In this section, multiple patches are merged 

into one so that the resolution of the image    

gradually decreases, but the information or      

features in it become more in-depth. This process 

continues until the image reaches the most      

compact stage in the bottleneck section, which 

serves as the connecting point between the encoder 

and decoder sections. Next, the image begins             

to be processed in the decoder section to restore       

the resolution to its original form. This process 

begins with patch expanding, which gradually 

increases the size of the image while still retaining, 

and the information from the encoder section 

connected through skip connections. These skip 

connections act as links that carry detailed 

information from the encoder to the decoder to 

ensure that each stage of image restoration          

retains important details. At the end of the process, 

the image goes through final patch expanding,       

which ensures the image resolution returns to full 

size so that each pixel has the correct class 

prediction. Figure 5 depicts the complete structure of 

the segmentation process.  
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Fig. 5. Swin Transformer segmentation architecture. 

 
The model was then trained using the Binary 

Cross Entropy with Logits Loss function 

(BCEWithLogitsLoss). A loss function was used      

to calculate how well the model makes predictions 

and was also used by the AdamW optimizer.       

During training, the model was evaluated on the 

validation set, and this process was repeated for 

several epochs until the validation loss no longer 

improved (early stopping). After training was 

completed, the model was tested on the testing set. 

The segmentation results were evaluated using the 

confusion matrix. 

Segmentation results were evaluated for 

performance on the entire dataset using DSC             

[77-84], IoU [78-82,84-86], and sensitivity metrics 

[78,80-88] following Eqs. (7-9). 

 

𝐷𝑆𝐶 =
2 𝑇𝑃

2 𝑇𝑃+𝐹𝑃+𝐹𝑁
  (7) 

 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
  (8) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (9) 

 
where True Positive (TP) is when the model detects 

the presence of a tumor, and there is in fact a tumor, 

meaning the model performed the detection 

correctly. True Negative (TN) occurs when the 

model detects no tumor, and in fact there is none, 

indicating that the model did not detect something 

that does not exist. False Positive (FP) is an error 

when the model detects a tumor when it does not 

exist. Conversely, a False Negative (FN) is when   

the model states there is no tumor when in fact there 

is one, which is a serious error because the tumor        

is not detected. 

 

 
RESULTS AND DISCUSSION 

This study uses a dataset of brain tumor MR 

images from BraTS 2021 with a total of 1,250 data. 

Data testing is done by dividing the image into 

several sets, i.e., training set, validation set, and 

testing set, with a ratio of 70:15:15. The division is 

done by dividing into two sets first, i.e., the training 

set 70 % and testing set 30 %. Then, the testing          

set is divided into two for the validation set and       

the testing set. Thus, the portion for the testing      

set and validation set is 15 % each. Studies by 

Mahyoub et al. [89] and Febrianto et al. [90] also 

used a ratio of 70:15:15, and the results provided 

good accuracy in the case of brain tumors. 

According to Naceur et al. [91], the distribution of 

datasets with 70 % training set and 30 % testing set 

is the most optimal distribution. 

In this research, before segmenting the            

brain tumor MR image, there is a preprocessing 

process. This stage consists of resizing, filtering, 

normalization, and augmentation. In this study, the 

MRI image was resized to a size of 224 × 224 pixels. 

This size was chosen because it is often used in 

medical image segmentation research as a standard 

input size. The resizing size used in this study uses 

references from the research of Alquran et al. [92] 

and Bianconi et al. [93]. This resizing aims to make 

all images used have the same dimensions as the 

tumor image but not so large that it burdens 

computational resources. By using this size, the 

model can be trained faster without sacrificing 

accuracy, maintaining a balance between image 

detail and training efficiency. This could potentially 

affect the segmentation results by speeding up the 

process without compromising the quality of the 

prediction. Furthermore, the filtering stage uses a 

median filter type. This filter is used to reduce noise 

in the image. According to Sheela and Suganthi 

[94], MR images usually consist of distortions and 

artifacts. The median filter is the most commonly 

used filter to filter out distortions and artifacts 

without losing important information in the image, 

such as image edges. According to Islam et al. [95], 

the median filter works well in protecting the 

smoothness of the image. Next, the normalization 

stage is performed to change the pixel values in the 

image to be in the range of 0 to 1. In this research, 

normalization is done by dividing each image pixel 

value by the highest (maximum) pixel value in the 

image. The image with the highest pixel value will 
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be 1, and the other pixels will be values between      

0 and 1. In the last preprocessing stage, i.e., 

augmentation, this stage serves to increase the 

number of images without changing important 

information in each image. This process is used to 

prevent overfitting problems in the model. There are 

four augmentation techniques used in this     

research, i.e., elastic transform, horizontal flip, 

vertical flip, and both horizontal and vertical            

flip. This augmentation process was carried out on 

the training set so that initially, the data amounted to 

875 images (70 % of the total image), so that in this            

process, the image data was multiplied 5 times         

from the initial amount, which resulted in              

4,375 images. This happens because each original 

image undergoes augmentation from the four         

techniques used. Thus, the number of images 

generated is 875 original images plus 4 times          

the number of original images, which is 4,375 

images in total. 

This research uses the Swin Transformer 

architecture to segment brain tumors in                  

MR images. In performing segmentation, there      

are several processes, which have previously           

been preprocessed on the image used. After that,    

of course, segmentation is done with the              

model itself. In this research, there are parameters 

used in the Swin Transformer architecture.            

The type of optimizer used in this research           

was AdamW. This selection is based on the slow 

convergence in training the Swin Transformer 

architecture, so the AdamW optimizer can  

accelerate convergence and reduce calculation    

losses during the training process [62].                      

The batch size used in this study is 32; this is               

a hyperparameter used to determine the number of 

images processed in one training model. Figure 6 

demonstrates the segmentation result of the        

Swin Transformer. 

This segmented image demonstrates the 

ability to detect and distinguish the tumor area       

from healthy brain tissue. The red color marks the 

tumor area, while the green line indicates the 

boundary between the tumor and the healthy        

tissue, ensuring that the detected area remains 

clearly separated. 

The model is able to capture precise details      

of the tumor, especially in high-density sections.     

The accuracy in detecting complex tumor structures 

allows for sharper segmentation that is more       

faithful to the original shape. In addition, the model 

can adapt detection to variations in tumor size        

and shape, ensuring that not only the core is     

detected but also the surrounding areas that have 

similar characteristics. 
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Fig. 6. Segmentation results of Swin Transformer  

(a) original images, (b) mask, (c) segmentation result, 

(d) histogram of image 1a, (e) histogram of image 1b, 

(f) histogram of image 1c, (g) histogram of image 2a,  

(h) histogram of image 2b, and (i) histogram of image 2c. 

 

Another noticeable advantage is the smooth 

and organized segmentation, where the boundary of 

the tumor can be well-identified without appearing 

blurred or merging with the surrounding tissue. This 

shows that the model has strong adaptability to 

variations in intensity and contrast in the image, 

providing results that are closer to reality. 

The difference between the histogram of the 

original image and the segmented image shows that 

preprocessing processes such as resizing, filtering, 

normalization, and augmentation play a role in 
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filtering out irrelevant information and clarifying the 

structure of the tumor to be analyzed. The histogram 

of the original image shows a wider distribution of 

pixel intensities, while the histogram of the 

segmented image is more focused on a specific 

range, indicating the success of the segmentation in 

highlighting the target area. 

Although some areas appear to be less 

optimally segmented, especially those with low 

intensity or fainter edges, the model still 

demonstrates the ability to detect the main part of 

the tumor. With precise segmentation results and 

clearer boundaries, this model has great potential in 

supporting more effective medical analysis and 

aiding in more accurate clinical decision-making. 

The segmentation process was performed on 

all images in each dataset. All these segmentation 

results were evaluated with three metrics. The total 

number of images evaluated by the model was 

4,750, which were then divided into three sets. The 

training set is 4,375 images, the validation set is 187 

images, and the testing set is 188 images. Table 1 

provides the acquisition of the confusion matrix. 

Using Eqs. (7-9), the model performance 

obtained on the training set shows the following 

metrics: DSC with a value of 0.98579, IoU          

with a value of 0.97198, and sensitivity of 0.98618. 

In the validation set, DSC is obtained with a       

value of 0.97885, IoU with a value of 0.95858,      

and sensitivity of 0.97006. In the testing set, DSC is 

obtained with a value of 0.97313, IoU with a value 

of 0.94767, and a sensitivity of 0.96450. 

From Table 1, it can be seen that the model 

has a high number of TPs, which indicates its ability 

to recognize the target area well in all sets. However, 

there are some FPs and FNs that need to be further 

analyzed to understand the potential causes of errors 

in segmentation. The higher FP values in the training 

set compared to the validation and testing sets 

suggest that the model may have experienced 

overfitting, where some non-tumor areas were 

classified as tumors. Meanwhile, the lower FP in the 

validation and testing sets indicates that the model 

has good generalization ability but still needs further 

improvement. One strategy to reduce FP is to apply 

more diverse augmentation data. In addition, the 

presence of FNs in all sets indicates that there are 

still areas of the tumor that are not detected by the 

model, which may result in a decrease in sensitivity. 

The persistence of FNs, although small in number, 

indicates that the model may still have difficulty in 

detecting some tumor areas with low contrast or 

irregular shape. To overcome this, it is possible to 

increase the input resolution to improve the 

sensitivity of the model to areas that are more 

difficult to recognize. 

In the process of obtaining the performance 
evaluation results, there is certainly a process from 
the beginning of image set sharing to obtaining these 
values. During the training process, the model is 
trained to make increasingly accurate predictions for 
the segmentation results of the image data. Each 
time the model goes through the entire data set in the 
training process, this is referred to as an epoch. In 
this research, the maximum epoch is set as 100, the 
minimum is 25, and the early stopping is 5. This 
means that the model will be trained up to a 
maximum of 100 epochs, where every one epoch 
signifies that the model goes through the entire 
training image data once. However, training does not 
stop if it has not reached the minimum 25 epochs, 
even if early stopping has been met. Early stopping 
is a technique used to stop training early if the 
performance of the model has not improved. In this 
case, if after 5 consecutive epochs there is no 
improvement in performance, the training is 
automatically stopped, which avoids overfitting and 
speeds up the training process. 

During the training process, the model 
stopped at the 31st epoch, indicating that early 
stopping was enabled. Although the maximum 
number of epochs had been set to 100, the model 
automatically stopped after 31 epochs because its 
performance no longer improved over the last 5 
consecutive epochs, which corresponds to the early 
stopping setting. This indicates that at that point, the 
model had reached its optimal performance, and 
continuing the training longer would not result in 
further improvement. During the 31 epochs, it took 
1574.388 minutes, which is equivalent to 26.2398 
hours. Figure 7 illustrates the loss that occurred 
during the model training process. 

 

Table 1. Confusion Matrix Acquisition of Segmentation 

Results. 
 

Confusion Matrix TP FP FN TN 

Training Set 3712 55 52 556 

Validation Set 162 2 5 18 

Testing Set 163 3 6 16 
 

 

 
 

Fig. 7. Loss graph during training, validation, and testing of 

Swin Transformer. 
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In the graph, the x-axis is represented as the 
number of epochs, which is the number of times the 
entire dataset is processed during training, and the y-
axis is represented as the loss value, which measures 
how far away the predicted results of the model are 
from the actual target. In the graph, there are three 
curves consisting of training loss in blue, validation 
loss in red, and testing loss in green. 

Based on the graph above, when viewed from 
epoch 0 to 15 for training loss, it can be seen that the 
loss value has decreased sharply, from above 0.10    
to drop quickly at the first epoch around 0.04.      
This shows that the model is able to learn the image 
data pattern in a short time. Validation loss also 
decreased, although not as fast as compared to 
training loss. This difference occurs because training 
loss is calculated based on image data that is learned 
directly by the model, so the model quickly adjusts 
its weights to minimize errors. In contrast, validation 
loss is calculated on image data that is not used 
during training, which aims to measure the 
generalization of the model. Testing loss also 
decreased but was higher than the validation loss. 
This indicates that the model is not fully optimized 
for the untrained image data. Then, from epochs     
15 to 31, the training loss graph continues to 
decrease slowly, while the validation loss and testing 
loss tend to flatten. This shows that the model learns 
well from the training data. Although there is a small 
fluctuation in testing loss, the model can still 
maintain its performance. 

Based on the performance evaluation,          

the segmentation results are helpful in determining 

the location and boundary of the tumor well. 

Segmentation plays an important role in the early 

stages of diagnosis to support therapy planning,   

such as the selection of appropriate treatment 

methods and calculation of radiation dose in cancer 

therapy. However, while it provides valuable 

information in the medical process, segmentation 

does not replace the final decision by the doctor. 

Further evaluation by the doctor is still required to 

ensure that the entire tumor area is well segmented 

and supports the overall clinical decision. If any part 

of the tumor is not detected or too little tissue is 

identified, this may indicate the need for model 

refinement, especially in the face of variations in 

size or more complex tumor morphologies. 

To understand the effectiveness of the       

Swin Transformer architecture, it is important to 

compare it with other methods that have been used 

in previous studies. Various approaches have been 

taken for image segmentation, especially for brain 

tumors. Table 2 provides a comparison between 

some of the methods used in previous studies. 

Some of these studies discuss various 

approaches in brain tumor segmentation using 

different models, preprocessing techniques, and 

datasets. Some of the models used include           

Swin Transformer, Transformer, CNN, ResNets, 

DenseUNet+, and GAN, each of which has its 

advantages, but their performance is highly 

dependent on preprocessing techniques and model 

complexity. A frequently used dataset is BraTS,    

with preprocessing techniques such as resizing, 

filtering, normalization, and augmentation to 

improve data quality. 

The comparison results show that the Swin 

Transformer in this study provides the best       

results, especially in capturing global patterns in 

images and linking information from distant parts. 

The hierarchical design and window shift operations 

make the Swin Transformer more computationally 

efficient, although it is able to achieve high accuracy 

and is very reliable in detecting tumors, even on 

complex areas, it still requires a large amount of 

computing power and memory. As described by 

Pacal [61], the Swin Transformer approach of 

processing small blocks in turn aims to improve 

computational efficiency compared to the traditional 

Transformer model. This approach prevents too 

much computational overhead and saves      

resources. However, despite its efficiency,             

the Swin Transformer still requires sufficient 

hardware to achieve optimal performance. 
 

Table 2. Comparison of Previous Research with Swin Transformer Architecture in Brain Tumor Segmentation. 
 

Research Dataset Preprocessing Model Used Performance 

Wang et al. [63] BraTs 2019 and 2020 normalization, augmentation Transformer DSC: 0.900 and 0.901 

Aboussaleh et al. [64] BraTs 2017 normalization, augmentation CNN DSC: 0.823 

Shehab et al. [96] BraTs 2015 bias correction, normalization ResNets DSC: 0.860 

Çetiner & Metlek [77] 
BraTs 2021 and FeTS 

2021 

normalization, filtering, 

augmentation 
DenseUNet+ DSC: 0.950 and DSC: 0.870 

Ali et al. [97] BraTs 2021 resizing, normalization 
Generative Adversarial 

Network (GAN) 
DSC: 0.940; Sensitivity: 0.920 

Hatamizadeh et al. [98] BraTs 2021 normalization, augmentation Swin Transformer DSC: 0.927 

Zongren et al. [71] BraTs 2021 
resizing, filtering, contrast 

processing  
Swin Transformer DSC: 0.932 

Present study BraTs 2021 
resizing, filtering, 

normalization, augmentation 
Swin Transformer 

DSC: 0.973; IoU: 0.947; 

Sensitivity: 0.964 
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Meanwhile, models like CNN and ResNets 

are lighter but have lower performance.            

CNNs, for example, rely on complicated 

preprocessing and masks provided by experts,    

while ResNets require large GPU memory and long 

training time. DenseUNet+ and GAN also perform 

reasonably well, with advantages in handling 

variations in tumor size and shape, but DenseUNet+ 

requires long training times and is difficult to adapt 

to new data sets, while GAN requires large data sets 

and sometimes unstable training. 

Overall, the Swin Transformer in this study 

stands out as the best choice for applications         

that require high accuracy and reliability in       

tumor detection, including in complex areas.         

The hierarchical design and window-shifting 

mechanism improve computational efficiency over 

traditional Transformer models while reducing the 

processing load. However, despite being more 

resource-efficient, this model still requires sufficient 

hardware for optimal performance. Therefore, other 

alternatives can be considered if resource constraints 

are a major factor or customization of the dataset 

and training process is required. 

The use of Swin Transformer in brain tumor 

segmentation was also found in Hatamizadeh et al. 

[98] report, which has some differences compared to 

this study, especially in preprocessing and 

optimization techniques. Hatamizadeh et al. [98] 

applied preprocessing in the form of normalization 

(zero mean and unit standard deviation) and data 

augmentation such as intensity shift, intensity scale, 

and random axis mirror reversal. Meanwhile, this   

study uses resizing (224 × 224), filtering (median filter), 

and normalization (range 0-1), which are simpler but 

effective in improving training efficiency. The 

augmentation applied in this study is also more 

varied, including elastic transform, horizontal flip, 

vertical flip, as well as a combination of both, which 

helps to improve the model's robustness to variations 

in tumor shape. In terms of optimization, 

Hatamizadeh et al. [98] did not mention the 

optimizer used, while this study uses the AdamW 

optimizer, which is superior in handling the learning 

rate adaptively and reducing overfitting through the 

weight decay mechanism. In theory, a larger dataset 

generally gives better segmentation results, but this 

study with 1,250 images was able to produce a DSC 

of 0.973, which is higher than that of Hatamizadeh 

et al. [98], who used 1,470 images and obtained a 

DSC of 0.927. This shows that the right combination 

of preprocessing and optimization can improve 

model performance despite the smaller amount of 

data used. 

Differences were also found in the study        

of Zongren et al. [71], especially in preprocessing 

techniques and the use of augmentation. Zongren et al. 

[71] applied resizing (128  ×  128), filtering (Gaussian 

denoising), and contrast processing but did not 

include the use of data augmentation. In contrast to 

this study, which uses resizing to 224 × 224, allowing 

the model to capture more details in the image. The 

filtering used in this study is also superior, with the 

application of a median filter, which is more 

effective in removing impulsive noise without 

blurring the image edges. In addition, this study also 

applied data augmentation, which enriched the 

dataset and improved the model's robustness to 

variations in tumor structure, in accordance with the 

principle of data augmentation needed to improve 

the generalization ability of the model [99]. In terms 

of optimization, Zongren et al. [71] used the Adam 

optimizer, while this study used the AdamW 

optimizer, which is better at handling the       

learning rate adaptively and reducing overfitting          

through weight decay. Although the dataset used in 

this study is smaller (1,250 images compared to 

2,000 images in Zongren et al. [71]), this study     

still produces higher segmentation performance 

(DSC 0.973 compared to 0.932), proving that better 

preprocessing and optimization strategies can 

outperform the advantage of data amount in 

improving segmentation accuracy. 

 

 

CONCLUSION 

This study shows that the Swin Transformer 

architecture can effectively segment brain tumor 

MRI images based on the results of performance 

evaluation using DSC, IoU, and sensitivity metrics. 

These results indicate that the Swin Transformer has 

great potential in improving segmentation accuracy, 

which can support the diagnosis and treatment 

planning process.  

However, this study still has some limitations. 

While the Swin Transformer offers high accuracy, it 

has greater computational complexity than 

conventional methods, requiring hardware with high 

processing power. This can be an obstacle in clinical 

implementation, especially in healthcare facilities 

with limited resources. In addition, the training and 

inference process of the Swin Transformer takes 

longer than some other lighter architectures,      

which may affect efficiency in real-time 

applications. Therefore, model optimization to 

reduce computational load and speed up inference is 

an important step in future research.  

Future research can focus on improving the 

efficiency of the Swin Transformer without 

sacrificing accuracy, for example through model 

quantization or parameter compression techniques. 

In addition, further development can be done by 
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integrating this model into a clinical decision 

support system that can assist doctors in diagnosing 

and treating brain tumors more quickly and 

accurately. The application of this method to broader 

clinical scenarios also needs to be explored to ensure 

its effectiveness in real conditions, so that it can 

contribute more to the medical world. 
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