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 Positron Emission Tomography and Computed Tomography (PET/CT), a key 

imaging modality in nuclear medicine, Combines Anatomical (CT) and functional 

(PET) data for cancer diagnosis. Despite advancements in machine learning for 

automated medical image analysis, publicly available PET/CT datasets remain 

scarce, limiting Artificial Intelligence (AI) research compared to CT and MRI. This 

study built a publicly accessible PET/CT Vietnamese dataset for Non-Small Cell 

Lung Cancer (NSCLC). A total of 416 PET/CT scans were collected from three 

Vietnamese hospitals, including 300 NSCLC cases. Malignant FDG-sensitive 

lesions, identified via clinical PET/CT reports, were manually segmented in 3D 

(slice-by-slice) on PET images and validated by three experienced radiologists. The 

dataset includes both original and annotated DICOM files, along with clinical 

patient data. It achieved a dice similarity coefficient of 80.3 % and volume 

similarity of 81.9 %, demonstrating high segmentation accuracy comparable to 

other studies. This dataset supports AI-driven NSCLC research and contributes to 

global efforts in automated PET/CT analysis for nuclear medicine applications. 
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INTRODUCTION 

Artificial Intelligence (AI) and Machine 

Learning (ML), specifically Deep Learning (DL), 

have been widely applied across various fields, 

enabling systems to operate more intelligently and 

efficiently. In certain scenarios, the image 

recognition capabilities of machines trained through 

DL can be better than humans, especially in tasks 

requiring rapid and accurate decision-making. 

Recently, the application of DL techniques for 

medical image segmentation has gained significant 
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attention from scientists worldwide, owing to their 

ability to process and learn from large datasets with 

high accuracy and speed [1-5]. 

Lung cancer remains one of the most 

dangerous and fatal diseases worldwide. In recent 

years, the application of ML models to automatically 

classify and segment lung cancer on Positron 

Emission Tomography and Computed Tomography 

(PET/CT) images has gained increasing attention. 

For instance, a study on classifying mediastinal 

lymph nodes of non-small lung cancer cells from 

PET/CT images was published by Wang et al., 

(2017) [5]. The study used PET/CT data to trace 

lymph nodes from 168 patients and then employed 

various machine-learning models for classification. 
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The results showed that the Support Vector Machine 

(SVM) model achieved an accuracy of about 83 %, 

while the random forest, AdaBooost, and 

Convolutional Neural Network (CNN) models 

achieved about 85 %, and the Artificial Neural 

Network (ANN) model reached an accuracy of 

around 80 %. For comparison, the independent 

classification accuracy of the doctor was reprted at 

81.61 % [5]. Furthermore, Zhao et al., (2018) [6] 

published a study on tumor segmentation from lung 

PET/CT images using the 3D CNN method. The 

study used PET/CT data from 84 patients to train the 

3D CNN model. The results showed that the model 

achieved a Dice Similarity Coefficient (DSC) of      

85 %, contrast-enhanced sensitivity of 33 %, and 

tumor volume deviation of 15 % [6]. Recently, the 

nnU-Net model was employed to automatically 

segment lung tumors from PET/CT images. The 

dataset included PET/CT scans from three groups of 

lung cancer patients, comprising 560 4D images for 

PET and 100 3D images for CT, all diagnosed by 

two independent experts. The model demonstrated 

high accuracy, with a DSC of 0.74 (4D) and 0.82 

(3D) for PET images, and 0.61 (4D) and 0.63 (3D) 

for CT images, significantly outperforming manual 

segmentation. These models show strong potential 

for clinical practice by integrating biological and 

anatomical information from PET/CT scans, thereby 

reducing the time and workload required by 

physicians [7]. 

The data used for machine training plays a 

critical role in enabling algorithm development and 

training. In the process of developing an AI model, 

data is always the foundation. Across all AI 

research, classifying and labelling datasets often 

takes up the most time, especially data sets that are 

accurate enough to reflect reality [1-8]. Therefore, 

compiling high-quality image datasets is a crucial 

step in developing AI applications for medical image 

diagnosis. While many convolutional neural 

networks for image recognition require datasets with 

thousands of images, smaller datasets still hold 

significant value for tasks such as texture analysis, 

transfer learning, and programming. However, many 

commercial AI products rely on proprietary or 

institution-specific datasets that are inaccessible due 

to patient privacy restrictions. Some imaging 

datasets containing cancer images and/or reports are 

publicly available through platforms accessible to 

researchers, although they are often reside in PET 

oncology database. The Web-Based Diagnostic 

Imaging of Experts Network (wang) and the Cancer 

Imaging Archive (TCIA) are the two notable 

examples. Both platforms continue to grow through 

ongoing contributions and are expected to accelerate 

ML research in oncology [9,10].  

The TCIA data repository as one of the      

best-known resources, offers a variety of curated 

image collections specifically focused on cancer 

imaging for use by various research institutions. All 

data in TCIA are completely de-identified using 

validated tools and procedures to comply with 

United States. and international privacy regulations. 

Although the number of online image repositories is 

increasing rapidly, few can match TCIA in 

supporting a wide variety of image data types, 

comprehensive metadata, robust data management 

processes, and versatile access methods for both 

human and computer. The rapid growth of research 

in machine learning-based quantitative image 

analysis has further expanded TCIA's mission to 

include providing datasets for training and testing 

new algorithms. This innitiative allows us to better 

understand the limitations imposed by existing data 

source on the development of novel machine 

learning models [9,10]. 

The Medical Imaging and Computer-Aided 

Intervention (MICCAI) conference has hosted 

several challenges on various medical imaging 

topics over the past few years. These challenges are 

organized by various institutions and provide the 

provision of curated datasets designed to address 

specific medical imaging problems. Such datasets 

often become standard benchmarks for evaluating 

new AI approaches, playing a crucial rolein ensuring 

reproducibility and enabling fair comparisons with 

state-of-the-art approaches. This practice facilitates 

more comprehensive evaluation, transparent 

replication, and clearer interpretation of challenge 

outcomes [11,12].  

In studies exploring AI applications for 

diagnosing and segmenting PET-CT images, the 

patient cohort typically ranges from a few dozen to 

several hundred, aligning with the number of images 

analyzed. These studies incorporate datasets 

comprising a few thousand to hundreds of thousands 

of two-dimensional slice images, offering a 

substantial basis for developing and validating AI 

models. Multiple expert pathologists, specializing in 

lung tumors, meticulously reviewed the histological 

sections to ensure accurate annotations, thereby 

boosting the reliability of AI-driven results. The 

inclusion of such extensive imaging data and expert 

validation supports improved accuracy in detecting 

and classifying tumors. 

Diagnostic results on CT images have lower 

sensitivity compared to PET/CT images, and false 

positive or misleading signs in CT scans can lead to 

misdiagnosis. It is difficult to determine the stage of 

the disease as accurately as PET/CT images. CT 

imaging primarily reveals the internal structure of 

the body, whereas PET imaging, through the uptake 
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of radiotracers suchas radioisotope absorption 

mechanism (FDG), provides functional information, 

pinpointing the exact location of tumors. Therefore, 

PET/CT data sets offer greater diagnostic 

significance than CT images. 

Although databases such as TCIA or WIDEN 

do exist, the availability of PET/CT image data on 

lung cancer remains limited, and access to these 

datasets is often restricted. The small size of data 

sets and lack of diversity across different 

geographies can hinder the generalizability and 

accuracy of AI algorithms. While smaller data sets 

may suffice for algorithms development in research 

settings, large-scale data sets with high-quality 

images and detailed annotations are still essential for 

supervised training, validation, and testing 

commercial products.  

This paper presents the process of collecting, 

processing, and evaluating PET/CT image data for 

lung cancer in Vietnam. This study aims to develop 

ML models capable of automatically classifying and 

segmenting PET/CT images, thereby assisting 

physicians in the diagnosis and treatment lung cancer. 

 

 

METHODOLOGY 

To achieve a high-quality imaging dataset, a 

multi-step data preparation process was 

implemented, following standardised protocols for 

medical imaging studies [8]. The process 

encompassed: (I) collecting images at clinical sites; 

(II) de-identifying images to remove personal 

information and protect patient privacy; (III) data 

management to control image information and 

quality; (IV) image storage and management; and 

finally (V) adding notes to and labelling images. The 

subsequent sections outline some key tasks required 

to build the dataset. 

 

 

Selection criteria for patient data 

Patient data were collected as part of a 

retrospective study, adhering to established 

guidelines for oncological imaging research [13]. 

The inclusion criteria for selecting patient imaging 

data were defined as follows: Y1- All patients were 

examined under the same imaging conditions and a 

consistent process using a standardised PET/CT 

protocol [14]; Y2- All selected cases were 

accompanied by pathological confirmation from 

surgical or biopsy specimens [15]; Y3- Each 

patient’s dataset included a complete set of imaging 

data and comprehensive medical history [14]. 

 

 

Patients were excluded based on the following 

criteria: N1: Individuals with lung adenocarcinoma 

who had received radiation, chemotherapy, or targeted 

therapy prior to PET/CT examination were excluded 

[16]; N2: Individuals with multiple lung tumor nodules 

or tumor in other anatomical regions were omitted 

[15]; N3: Tumor lesions located centrally and 

indistinguishable from the surrounding anatomical 

structures were excluded [16]; N4: PET/CT images of 

suboptimal quality, deemed inadequate for diagnostic 

purposes, were not included [14]. 

According to the final pathological results, the 

collected data were categorized into positive and 

negative groups, following established protocols   

for oncological imaging studies [8,14]. The 

retrospective study was conducted under a protocol 

approved by the Institutional Review Board of  

Vietnam National Cancer Hospital, Hanoi Oncology 

Hospital and Ho Chi Minh City Oncology Hospital 

in Vietnam, with patient consent waived as per 

standard ethical guidelines for retrospective analyses 

[10]. This approach aligns with common criteria for 

dataset selection in contemporary PET/CT research 

[3]. Publicly available PET/CT datasets, spanning 

from June 2019 to June 2023, were acquired from 

the aforementioned hospitals. All imaging data    

were obtained using modern PET/CT scanners, 

ensuring consistency with international imaging 

standards [13].  

 

 

Security and privacy 

To protect patient privacy, PET/CT data were 

anonymized during preprocessing in compliance 

with international regulations on medical 

information security, including the General Data 

Protection Regulation (GDPR) and local ethical 

standards [2,4]. The dataset was formally approved 

and licensed for research and machine learning 

applications by the Institutional Review Boards of 

the three participating hospitals [10].  

 

 

Preprocessing and normalization of data 

Preprocessing of PET images was performed 

using Gaussian filtering for noise reduction, 

followed by attenuation correction and alignment 

with corresponding CT images, adhering to 

standardized PET/CT preprocessing protocols 

[13,17,18]. The data were normalized to ensure 

uniformity in size and format, rendering them 

suitable for image segmentation tasks in accordance 

with international dataset standards [15,16].  
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Label and annotate 

Patients with lung cancer and those without 

were selected based on medical history findings, 

following established protocols for oncological 

imaging studies [8]. Data on patients’ age, weight, 

gender, 18FDG dosage, disease status, smoking 

history, disease stage, and PET/CT whole-body 

imaging findings (including tumor location, size, 

and maximum standardized uptake value—

SUVmax) were collected and documented, 

consistent with standardized data acquisition 

methods [13].  

Based on clinical and medical history, 

PET/CT imaging results, tumor biopsy findings, and 

supplementary tests, patients were categorized into 

two groups: Non-Small Cell Lung Cancer (NSCLC) 

and other conditions, as described in previous 

studies [14]. For patients with NSCLC, tumor 

images were segmented independently by three 

experts in anatomical and functional imaging, each 

with at least five years of experience, using 3D-

Slicer software, yielding three distinct datasets [15]. 

These datasets were assessed by nuclear medicine 

physicians and radiologists. Firstly, PET/CT images 

were qualitatively evaluated to identify lesions with 

elevated 18FDG uptake, a technique widely adopted 

in oncological PET imaging [8]. Subsequently, 

lesion dimensions were measured, and 18FDG uptake 

was quantified using SUVmax for primary tumors, 

lymph nodes, metastases, and other lesions, 

following standardized quantification protocols [16]. 

Within the Region of Interest (ROI), SUVmax was 

determined, delineating two uptake categories: high 

uptake (SUVmax > 5.0) and moderate uptake 

(SUVmax 2.5–5.0), consistent with clinical 

thresholds reported in the literature [14,16]. 

Tumor volumes were formatted as 

independent three-dimensional (3D) data matrices to 

facilitate ML applications. Figures 1 and 2 depict a 

representative slice of CT and PET images, 

respectively, with tumor regions segmented by 

physicians and highlighted for clarity. Figures 3 

illustrates a 3D visualization of the tumor volume, 

with surrounding tissues removed to enhance tumor 

visibility. These volumes were stored as digital 

matrices in NRRD format, enabling their use as 

training data for ML models. This structured 

formatting, consistent with the dataset’s 

arrangement, supports efficient data processing and 

aligns with standards for oncological imaging 

datasets [3,15]. Compared to datasets with 2D 

segmentation outputs [6,7], this 3D matrix approach 

enhances spatial analysis for ML, though 

computational complexity may necessitate 

optimized algorithms [8]. 

 
Fig. 1. Image of a lung tumor marked on a slice from a CT scan. 

 

 
Fig. 2. Image of a lung tumor marked on a slice from a PET scan. 

 

 

Fig. 3. A three-dimensional image of the tumor volume after 

removing other surrounding tissue to improve the view             

of the tumor. 

 
 

Metric evaluation of the dataset 

Consistency and reliability of segmentation 

labels are critical for PET/CT image segmentation, 

particularly in determining tumor volume, and 

require high levels of agreement among physicians 

in clinical applications [3,8]. In this study,         

PET/CT image data for each patient were 

independently segmented by three physicians with 

expertise in oncological imaging. To assess the 

similarity between segmented datasets and ensure 

the quality of segmentation labels, the Relative 

Volume Difference (RVD) and Dice Similarity 

Coefficient (DSC) were calculated, following 

established metrics for evaluating medical image 

segmentation [15,17]. 
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The RVD was calculated to analyze the 

volumetric error between automated and manual 

contour for each tumor, defined as follow Eq. (1) [16]: 

 

𝑅𝑉𝐷 =
|𝑉1−𝑉2|

𝑉1
× 100 %    

 

where V1 and V2 represent the tumor volumes 

manually segmented by the first and second 

physicians, respectively. 

The DSC, a widely adopted metric for 

assessing the overlap between two segmented 

volumes, was employed to evaluate the agreement 

between physician pairs or between expert and 

automated segmentations [2,15]. This metric is 

expressed by the formula below Eq. (2): 

 

𝐷𝑆𝐶 =
2×∣𝐴∩𝐵∣ 

∣𝐴∣+∣𝐵∣
       

 

where A and B denote two segmented volumes, ∩ 

represents their intersection, and ∣A∣, ∣B∣ indicate the 

sizes of each volume. The DSC ranges from 0       

(no overlap) to 1 (perfect overlap), with values of 

0.7 to 0.8 typically considered indicative of good 

segmentation quality for tumor delineation in 

PET/CT imaging [7,17]. 

 
 
RESULTS AND DISCUSSION 

A dataset including 416 PET/CT images was 

compiled, with 300 images obtained from patients 

diagnosed with Non-Small Cell Lung Cancer 

(NSCLC) and the remaining 116 images from 

individuals without NSCLC. This sample size was 

deemed statistically sufficient for training and 

testing machine learning models, surpassing the 

dataset sizes reported in comparable studies [1,7,8]. 

The dataset was collected from three major hospitals 

in Vietnam—Vietnam National Cancer Hospital, 

Hanoi Oncology Hospital, and Ho Chi Minh City 

Oncology Hospital—using various modern PET/CT 

scanners, ensuring diversity in imaging equipment 

and patient demographics [3]. The cohort included 

231 male patients (55.5 %) and 185 female patients 

(44.5 %), with a mean age of 61.2 ± 9.9 years 

(range: 25–80 years). No significant age difference 

was observed between male and female patients (p > 

0.05), consistent with demographic distributions 

reported in prior NSCLC studies [14]. 

Each fused PET/CT image was acquired at a 

resolution of 512 x 512 pixels, with the PET 

component at 192 x 192 pixels and the CT 

component at 512 x 512 pixels, aligning with 

standard resolutions for PET/CT datasets used in 

image segmentation [13,17]. The CT images had a 

pixel size of 1.037 x 1.037 mm² and a slice thickness 

of 3.26 mm, while the PET images had a pixel size 

of 3.646 x 3.646 mm² with an identical slice 

thickness. Hounsfield Unit (HU) values of CT 

images and Standard Uptake Value (SUV) of PET 

images varied across a range sufficient to 

differentiate lung tumour regions from normal 

tissues, as illustrated in Figs. 4 and 5. These imaging 

characteristics met the requirements for high-quality 

datasets suitable for segmentation tasks [15,16].  

The PET/CT dataset was structured into two 

groups based on Non-Small Cell Lung Cancer 

(NSCLC) status, as illustrated in Fig. 6. For 

individuals without NSCLC, including healthy 

subjects and patients with other cancers, data were 

organized into folders labeled 0BNxxxx, where “0” 

denotes the absence of NSCLC and “xxxx” 

represents the individual’s code. Each folder 

contains two NRRD files: “3 CTAC 375mm.nrrd” 

for CT data and “12 PET WB AC HD.nrrd” for PET 

data. For NSCLC patients, data were stored in folders 

labeled 1BNyxxx, with “1” indicating NSCLC, “y” 

specifying the physician’s code (1, 2, or 3) for tumor 

segmentation, and “xxx” denoting the patient’s code. 

These folders include three NRRD files: “3 CTAC 

3.75mm.nrrd” (CT), “12 PET WB AC HD.nrrd” 

(PET), and “Segmentation.seg.nrrd” (a 3D binary 

matrix, with 0 for non-tumor and 1 for malignant 

tumor regions). 

 

 

Fig. 4. A slice of a CT image with HU values varying from low 

to high clearly shows the biological structure of each pixel. 

 

 

Fig. 5. A slice of a PET image with SUVs varying from low to 

high clearly shows the biological structure of each pixel. 

(1) 

(2) 
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Fig. 6. The flowchart explains how to sort the data into the 

groups and the order of the file or folder names. 

 

PET and CT images were synchronized and 

merged with high precision before segmentation, 

facilitating accurate tumor localization. With clear 

labeling and consistent file formats, this structured 

organisation enhances data accessibility for machine 

learning applications, aligning with standards in 

similar PET/CT datasets [3,15]. Compared to 

datasets with less granular physician-specific 

segmentation [6,7], this approach ensures robust 

inter-observer validation. 

 
Table 1. Comparison of the relative volume difference of 

segmentation data between physicians. 

Compair between Range of RVD 
Number of 

patients 
Rate (%) 

Physican 1st and  

physican 2sd 

0.0-0.1 30 10.0 

0.1-0.2 179 59.6 

0.2-0.3 91 30.4 

Physican 2sd and 

physican 3rd 

0.0-0.1 21 7.0 

0.1-0.2 148 49.3 

0.2-0.3 131 43.7 

Physican 1st and 

physican 3rd 

0.0-0.1 29 9.7 

0.1-0.2 157 52.3 

0.2-0.3 114 38.0 

 
Table 2. Comparison of dice similarity coefficient of 

segmentation sets between physicans. 

Compair 

between  

Range of 

DSC 

Number of 

patients 
Rate (%) 

Physican 1st and 

physican 2sd  

0.9-1.0 32 10.7 

0.8-0.9 183 61.0 

0.7-0.8 85 28.3 

Physican 2sd and 

physican 3rd  

0.9-1.0 25 8.3 

0.8-0.9 154 51.4 

0.7-0.8 121 40.3 

Physican 1st and 

physican 3rd  

0.9-1.0 34 11.4 

0.8-0.9 169 56.3 

0.7-0.8 97 32.3 

Table 3. Statistics on tumor size of non-small cell lung      

cancer patients. 

Size of tumor (cm) Number of patients Rate (%) 

≤ 3 151 50.33 

>3-5 89 29.67 

>5-7 60 20.00 

X±SD 
2.8 ± 1.0 

(1.2 – 7.1) cm 
 

 
Table 4. Statistics of 18FDG absorption (SUVmax) according to 

tumor size. 

Size of tumor (cm) Number of patients SUVmax 

≤ 2 53 4.2±1.8 

>2-3 98 5.6±2.7 

>3-5 89 8.0±3.5 

>5-7 60 17.5±12.8 

Total 300 5.8 ± 3.5 

 
The Relative Volume Difference (RVD) was 

calculated to assess volumetric discrepancies 

between physician-segmented tumor volumes, 

yielding a mean RVD of 20.0 % (Table 1).           

This low discrepancy, particularly between            

the first and second physicians, indicates             

high inter-observer consistency, comparable            

to or surpassing values in similar PET/CT        

studies [3,15]. 

The Dice similarity coefficient (DSC) was 

computed to evaluate segmentation overlap, with 

100% of patient data achieving a DSC ≥ 0.70 (mean: 

0.802; range: 0.70–0.983; Table 2). The highest 

agreement occurred between the first and second 

physicians (DSC = 0.823), aligning with acceptable 

thresholds for tumor segmentation (0.7–0.8) reported 

in prior research [7,14]. These metrics confirm the 

dataset’s segmentation reliability, establishing it as a 

good resource for testing machine learning 

algorithms [8]. 

Tumor characteristics were analyzed, with 

sizes ranging from 1.2 to 7.1 cm (mean: 2.8 ±        

1.0 cm) and a mean 18FDG uptake (SUVmax) of    

5.8 ± 3.5 (Table 3). Tumors in the left lung 

exhibited slightly higher SUVmax than those in the 

right lung, though the difference was not significant        

(p = 0.21), contrasting with some studies reporting 

laterality effects [4]. A moderate positive 

correlation was observed between SUVmax and 

tumor size (r = 0.58), with SUVmax increasing 

significantly for larger tumors (mean SUVmax:    

8.0 ± 3.5 for 3–5 cm; 5.6 ± 2.7 for 2–3 cm; 2.4–4.2 

for < 2  cm; Table  4).  These  findings  align  with  
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prior NSCLC studies noting higher 18FDG uptake 

in larger tumors [14,16]. Lesions < 1 cm showed 

low 18FDG uptake, necessitating careful CT 

evaluation to avoid oversight, consistent with 

clinical guidelines [16,17]. The dataset’s 

segmentation consistency and tumor characteristics, 

comparable to high-quality PET/CT datasets [6,7], 

support its suitability for developing accurate 

machine learning models. However, inter-scanner 

variability in SUVmax measurements may require 

further standardization [5,13]. 

 
CONCLUSION 

A comprehensive PET/CT dataset for Non-

Small Cell Lung Cancer (NSCLC) was established, 

encompassing 416 images from patients in Vietnam. 

The dataset includes patient metadata (age, gender, 

weight, FDG dose, smoking history), labeled 

DICOM files of PET and CT images, and NRRD 

files with tumor segmentation data from three 

independent physicians for 300 NSCLC cases. Each 

patient’s imaging data comprises 200–300 slices, 

with segmentation metrics demonstrating high 

reliability (mean Dice similarity coefficient: 0.803; 

mean relative volume difference: 20.0 %). This 

dataset’s size, diversity, and segmentation quality 

make it a valuable resource for advancing machine 

learning applications in NSCLC research. Future 

efforts should focus on standardizing imaging 

protocols and validating models across diverse 

populations to enhance clinical applicability. 
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