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ARTICLE INFO ABSTRACT

The motion of a nucleon in q-deformed Eckart potential field coupled with Yukawa-
type tensor potential is described by using Dirac equation. The bound state solutions
of Dirac equation for g-deformed Eckart potential with Yukawa-type tensor
potential under exact spin- and pseudospin-symmetric limit are obtained using finite
Romanovski polynomials. The approximate relativistic energy spectra are exactly
obtained within the approximation scheme of centrifugal term. The relativistic
energy is negative for pseudospin symmetry and positive for spin symmetry. The
radial component of Dirac spinors are obtained in terms of Romanovski
polynomials under exact spin- and pseudospin-symmetric conditions. The
relativistic energy spectrum for the exact spin-symmetric case reduces to non-
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INTRODUCTION

The bound state solutions of Dirac equations
for some central/non-central physical potentials,
which are mixtures of attractive scalar potential S(r),
repulsive vector potential V(r), and tensor
interaction potential U(r), have been intensively
investigated since they have important applications
in quantum chemistry and nuclear physics. Dirac
equations are used to describe the motion of
particles governed by strong force when relativistic
effects are taken into account. Dirac equations for
central/non-central potentials together with/without
tensor potentials have been solved by Nikiforov-
Uvarov (NU) method [1-5], factorization method
and supersymmetric quantum mechanics (Susy QM)
[6], hypergeometric and confluent hypergeometric
methods [7,8], and asymptotic iteration method [9].
Dirac equations with central/non-central potential
are solvable exactly only for the s-wave For the
l-wave, they are only solved approximately due to
the contribution of the centrifugal term. The
approximation scheme of the centrifugal term was
proposed by Greene and Aldrich [10] and this

*Corresponding author.
E-mail address:suparmiuns@gmail.com

112

approximation works well for
exponential and trigonometric potentials.

Dirac equations with specific condition,
where the substraction of the repulsive vector
potential by an attractive scalar potential results in
zero, have also been investigated recently. The
potentials investigated include, among others,
Makarov potentials [11,12], ring-shaped oscillator
potentials [13], ring- shaped non-spherical harmonic
oscillator potentials [14,15], Coulomb potentials
plus new ring-shaped potentials [16], and Hartmann
potential plus new ring-shaped potential [17,18].
Those potentials are widely used in studying the
relativistic effects of the distorted nucleus, the
interaction between the ring-shaped molecules, and
complex vibration-rotation energy structure of
multi-electron atom.

The solution of Dirac equation with special
cases of spin symmetry and pseudospin symmetry
have been investigated for some typical potentials
[19,20]. Spin-symmetric and pseudospin-symmetric
concepts have been used to study the aspects of
deformed and superdeformed nuclei in nuclear
physics. The concept of spin symmetry has been
applied to the spectra of meson and antinucleon
[21], and the pseudospin symmetry concept is used
to explain the quasi-degeneracy of nucleon doublets

hyperbolic/
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[22], exotic nuclei [23], and superdeformation in
nuclei [24], and to establish an affective nuclear
shell-model scheme [25]. Spin symmetry occurs
when the repulsive vector potential subtracted by
the attractive scalar potential is equal to a constant
[26], while pseudospin symmetry arises when the
sum of the scalar potential with vector potential is
equal to a constant [21,27].

Quantum deformation has been studied
recently due to its relation with applications in
nuclear physics [28], statistical-quantum theory and
conformal field theory [29]. The q-deformation of
hyperbolic potential, which was introduced by Arai
[30], has been investigated by some authors
[31,32]. Sauza Dutra [33] has reinterpreted the idea
of g-deformed potential as a kind of parameter
scaling symmetry of the model, so the g-deformed
system is not a new class of potential. The
g-deformed hyperbolic potential can be transformed
to non-deformed hyperbolic potential or vice-versa
by using translation of spatial variable.

In this paper, the relativistic energies and
wave functions of q-deformed Eckart potentials with
Yukawa-type tensor potentials [8] are analyzed
using finite Romanovski polynomials. The Eckart
potential is an anharmonic potential which is

used to describe diatomic molecular energy
spectra, electromagnetic transitions, and the
internuclear potential in diatomic molecules

[34,35]. The spherically symmetric Eckart-type
potential is also used as molecular potential model
which has been applied in chemical physics. The
Yukawa potential, also known asthe screened
Coulomb potential, was originally used to model
strong nucleon-nucleon interactions caused by
exchange interactions in nuclear physics and to
explain the cloud of electronic charges around the
nucleus [36,37]. The Yukawa potential was
proposed to build the meson theory which describes
nucleon-nucleon interactions [38,39].

The finite Romanovski polynomial is a
traditional method which consists of reducing
Schrédinger equation by an appropriate change of
variable to attain a form of generalized
hypergeometric equation [40]. The polynomial was
discovered by Sir E.J. Routh [41] and rediscovered
45 years later by V.I. Romanovski [42]. The term
“finite” refers to the observation that for any given
set of parameters (i.e. at any potential) only a finite
number of polynomials appear orthogonal [43]. We
apply the Romanovski polynomial method since this
method is simpler than the NU method for obtaining
the energy spectrum and the wave function,
although there are limitations in determining the
normalization of the wave function. Until recently,
only few researcher used Romanovski polynomials

to solve Schrodinger equation for certain potentials
[44-46].

This paper is organized as follows. A brief
review of the Dirac equation and the q-deformed
potential are next presented in the second section.
The finite Romanovski polynomials as an analysis
method is presented in the third section. Solutions of
Dirac equations, results, and discussions are
presented in the fourth section. Finally, the last
section presents a brief conclusion.

THEORY
Basic equations of diracspinors

A Dirac equation which describes the motion
of a nucleon with mass M in a combined potential
which includes a repulsive vector potential V(r), an
attractive scalar potential S(»), and a tensor potential
U(r) is given as [8,47-49]:

{c?.[) + B(M + S(7))— iﬂa.?U(r)} w(7)
= {E-V () () @

Where E is the relativistic energy and p is the three
dimensional momentum operator, —iV

R 0 o I 0
a:(o_ Oj,and/;:(o _Ij @)

where o is the three dimensional Pauli matrix, / is
the 2x2 identity matrix, and U(r) is a tensor
potential. Here we consider the matrix potential in
equation (1) as a spherically symmetric potential;
thus, they only depend on the radial coordinate

7 :|l7| and we have taken 72=1, ¢ = 1. The Dirac
equation expressed in equation (1) is invariant under
spatial inversion, and the refore its eigenstates have
definite parity.

The spinors are then written as

Ex(r)
s [P

o(7

!//(77)=( 3)

iSOyl 9.9)
-

where ¢ (17 ) is the upper (large) spinor component

of the wave function andw(f )is the lower (small)
/ .

Y, (0,9)is

harmonics, Y;ﬂ (6,¢)is  pseudospin-spherical
harmonics, and m is the projection of the angular

spinor component, spin-spherical
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momentum on the z-axis. The Hamiltonian of Dirac
equation in a spherical field commutes with the total

angular momentum operator J and the spin-orbit
coupling operator K , K :_ﬂ(a-jﬂ) with L being

the orbital angular momentum. The eigenvalues of
the spin-orbit coupling operator are

= (J +1/ 2) >0 for unaligned spin
(P2>dy5,--) and = —(J+1/ 2)<0 for aligned
Spin (Sy2> Pypseee) -

quantities  consist of the set of H ,Iz,j,Jz.
Inserting equations (3) and (2) into equation (1),

we obtain
0 &)
—IJ(M”(” )(¢(r)]_

(0 O-) [C:(r)j [1
P +
o 0 é(r) 0
&(r)
e ))ng( )j 4)

zﬂa.fU(r)(ar)]

P(r)

From the matrices multiplication in equation (4) we
obtain the upper and lower radial part of the Dirac
equation, respectively, as

Therefore the conservative

{dz K(K2+1) 2KU() Uz()_U}F ®
dr* r

N dA(d L U(r)j/(M +E,. — A()F,.(r)

dr\dr r

+(M+E, —ANE,. —M—2(r)F, (r)=0 (5)

And
d4> Kk — 1) 2 dU
{d,, _ U() U (r)+d}G ()
+dz[d—K+U(l")j/(M_Em( +z(r))Gm((r)
dr\dr r

+(M +E, .~ A(HNE,, — M —2(r))G,.(r) =0 (6)

where the spin-orbit quantum number X is related
to the wusual orbital angular momentum by
x(x+1)=I(/+1) which corresponds to the upper
spinor component and is related to pseudo-orbital
angular momentum by K(K—l):l_(l_+1) for the
lower spinor component, 2(7) =V (r)+S(r)is the

sum of scalar and vector potentials, and

A(r)=V(r)—S(r)is the vector potential
subtracted by the scalar potential.
Pseudospin ~ symmetry  occurs  when

2(r)=V(r)+S(r)=C,is constant, therefore the

Dirac equation for the lower spinor in equation (6)
reduces to
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d  K(k- 1) 2K
{a’rz_ = U() U()+d}G (r)

+(M+E, - A(r))(EnK ~M~C,)G, (=0 ()

with x(k—1)=1(l +1), where ! is the pseudo-
angular quantum number :x = —I for
andx =(/ +1) forx >0. Also,

[ =l-x/ |K'| . These conditions imply that the total

orbital
k<0

angular momentum j ZI_J_FE is degenerate for

[ #0 [50,51].

Further, the exact pseudospin symmetry
X(r)=V(r)+S(r)=C, =0,
Eckart
A(r)=V(r)—S(r) Therefore,

equation (7) becomes

arises when and the

g-deformed potential  expressed in

equation (10) is

&’ k(k- D, 2K
dr’ r

+(EM2—M2)GW(r)+A(r>(M E)G.(=0  (8)

—Un-v (V)+d}G,,K( )

On the other hand, the exact spin symmetry occurs
when, A(r)=V(r)-S(r)=0and X(r)=V(r)+S(r)
is the g-deformed Eckart potential expressed in
equation (18). Therefore for exact spin symmetry,
the Dirac equation for the upper spinor expressed in
equation (5) becomes

{j WD 2y - U2()—U}F )

HE, MR () -SNE + MED=0 ()

The Dirac equations for both the exact
pseudospin symmetry and the exact spin symmetry
in equations (8) and (9) are solved using
Romanovski polynomials. By solving the Dirac
equation for the pseudospin-symmetric case in
equation (8), one can obtain the solution of the spin-
symmetric case in equation (9) by changing the
solution by

A(r) > =X(r) Vy > Vs Vi > =1).

AU | _dU.E,—>-E xc—>x+1

- — 93
dr dr a)

therefore the Dirac equation is readily solvable.
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Review of q-deformed hyperbolic function

The g-deformed Eckart potential and the
Yukawa-type tensor potential are given as:

-2ra —2ra
. e 1+ge
V(r5 0) =a VO (1 _ q672m)2 g 1 _ qe—Zra j (10)
efra
U@r)=-r,a’ (11)

Vo and V;represent the depth of the Eckart potential
well and are positive. Also, V7 > V. Further, a is a
positive parameter which controls the width or the
range of the potential well; ¢ > 0 is the deformation
parameter of the potential; V, is the strength of the
nucleon force; and «a is the range of nucleon force
[53], while M is the mass of the particle. Here
O<r<oo.

The g-deformed hyperbolic potential as
introduced by Arai [30] some years ago is defined
as

ar —ar oar —ar
. e —ge) (e +qe)
sinh ar = —4¢ ) ; cosh ar="X T4¢ ) ;
q q 2
sinh . ar 1
tanhq ar = ;sech =——
cosh g or cosh . ar

2 IR 2 2
cosh? ar —sinh; ar=¢; 1-tanh} ar =gsechyar  (12)

By a convenient translation of the spatial
variable, one can transform deformed potentials to
the corresponding non-deformed ones or vice-versa.
By using a translation of spatial variable introduced

by Dutra [33]
In \/;
a

r—r+ (13a)

the deformed potential in equation (12) changes into
a non-deformed one given as

sinh, or = \/asinhar; cosh, ar= \/gcoshar;

tanh, ar =tanharz (13b)

In the same way, by applying the translation of
spatial variable

ln\/;

o

r—>r— (14a)

to the non-deformed hyperbolic function potential
we obtain the deformed potential as

sinh_ar cosh, ar
1 ; coshar =

The translation of spatial variable in equation
(13b) was used to map the energy and wave
function of non-deformed potential into deformed
forms of modified Poschl-Teller and of hyperbolic
Scarf potentials [32]. By applying the concept of
hyperbolic functions and the translation of spatial
variable, the Dirac equation for gq-deformed Eckart
potential combined with Yukawa-type tensor
potential is expressed in hyperbolic functions.

EXPERIMENTAL METHODS

For exact spin and pseudospin symmetries,
the Dirac equation for q-deformed Eckart potential
within the Yukawa type tensor reduces to
Schrodinger-type equation. Therefore, it can be
solved using Romanovski polynomials. The one-
dimensional second order differential equation
satisfied by Romanovski polynomials is developed
based on hypergeometric differential equations.
The one-dimensional Schrédinger equation of
potential of interest reduces to the differential
equation of Romanovski polynomial by appropriate
variable and wave function substitutions.
The general one-dimensional Schrédinger equation
is given as

Y
2M ot

+V(x)¥(x) = E¥(x) (15)

where V (x) is an effective potential which is mostly
shape-invariant potential, M is the mass of particle,
E is the energy eigenvalue of particle. By suitable
variable substitution x = f{s) in equation (15) then it
changes into generalized hypergeometric type
equation expressed as

OM(s) | 7(s) D¥(s) , S(s)

16
s’ o(s) Os o’ (s) (16)

Y(s)=0

witho(s) and &(s) are mostly polynomials of order
two, 7(s) is polynomial of order one, s, o(s),
o(s), and 7(s)can have any real or complex

values [55]. Equation (16) is solved using variable
separation method by introducing new wave
function given as

s Tl
¥ (=g, (s)=(1+s)2e?2  DP(s) (17)
such that we obtain a hypergeometric type

differential equation, which is satisfied by finite
Romanovski polynomials [44,53] is expressed as
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o(s)y"(s) +7(s)y'(s) + Ay(s) =0 (18)
With

o(s)=as’ +bs+c; T= fS+h;

~{n(n-1)+2n(1-p)}=1=4, (19)

For Romanovski polynomials, the values of
parameters in equation (19) are

a=1,b=0,c=1f=2(1-psh=q ;p>0 (20)

therefore by considering equations (19) and (20) we
can rewrite equation (18) as

2 p(p-4)

(1+s%) azz +{2s(-p+D+q'

| OR" (s)
S

—{n(n-1)+2n(1- p)} R""(s)=0 (21)

Equation (21) is second order differential equation
satisfied by Romanovski polynomials with

v, =R () =D (s) (22)
Equation (18) is described in the textbook by
Nikiforov-Uvarov [55] where it is cast into self

adjoint form and its weight function, w(s), satisfies
Pearson differential equation

=1(s)w(s)

d(o(s)w(s) o)
ds

The weight function, w(s), is obtained by
solving the Pearson differential equation and by
applying condition in equations (19) and (20), so we
get

' e |
WP )(s) =(+s>)Pel™ © (24)
The corresponding polynomials are classified
according to the weight function, and are built up

from the Rodrigues representation which is
presented as

B d" 5 n }
=1 as”+bs+c) w(s (25)

n w(s) ds”" {( ) ()
with B, is a normalization constant, and for

o(s)>0
polynomials and are orthogonal with respect to the
weight function w(s) within a given interval (s, ;) ,
which is expressed as

and w(s)>0, y,(s)’s are normalized
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o0

[ w()y,(s)y,(s)ds =05,,

—o0

(26)

This weight function in equation (24) first
reported by Routh [41] and then by Romanovski
[42]. The polynomial associated with equation (25)
are named after Romanovski and will be denoted by
R'"" (). Due to the decrease of the weight function

by s, integral of the type

[ WORPD ()RPD (s)ds  (27)
will be convergent only if
n+n<2p—1 (28)

This means that only a finite number of Romanovski
polynomials are orthogonal, and the orthogonality
integral of the polynomial is expressed similar to the
equation (26) where y, = R\7"(s).

The heart of Romanovski polynomials
method is in obtaining differential equation that has
similar form with equation (21) from one-
dimensional Schrodinger equation. The Schrodinger
equation of the potential of interest will reduce into
second order differential equation that is similar to
equation (21) by an appropriate transformation of
variable, for example, » = f{s), such that generalized
hypergeometric equation expressed in equation (16)
is obtained. Then equation 16-type is being solved
using variable separation method by substituting a
new wave function given in equation (17) and
finally we get new equation in the form of equation
(21) with pand o parameters. By comparing

equation (21) and new equation, we get the relation
between f with p, and « with ¢’. The Romanovski
polynomials obtained from Rodrigues formula
expressed in equation (25) with the corresponding
weight function in equation (24) is expressed as

1

Rr(lpnqﬁ(s) — Dr(lﬂ,a)(s) — —
(1+S2)—p eq'tan (s)

n

(29)

n

{(1 +s2)"(1+ sz)—Peq'tan”(S)}

If the wave function of the n™ level in equation (17)
is rewritten as

1

1 n L Ll
(I+s7) % e? R7(s)

q(s)
ds

¥, ()=

(30)
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then the orthogonality integral of the wave functions
expressed in equation (30) gives rise to
orthogonality integral of the finite Romanovski
polynomials, that is given as

[0, 07 (r)dr = [ W2 RP RV (s)ds (31)

0 —0

In this case, the values of p and ¢’ are not
dependent on the degree of polynomials #.
However, if either equation (26) or (28) is not
fulfilled then the Romanovski polynomials is
infinity [43,45]. The lower and upper components of
Dirac spinors are expressed as wave function in
equation (17).

RESULTS AND DISCUSSION
Exact pseudospin-symmetric case

By inserting q-deformed Eckart potential and
Yukawa-type tensor potential into equation (8) we
have

Ve 1+ge ™™
_az : —2ra\2 _Vl q —2ra (En/c _M) Gm((r)
(1—ge™™) 1—ge

-—(E,>-M?) G,.(r)

nK nK (32)
Equation (32) can not be solved exactly unless we

_— 1
use approximation to the — and — terms. For small
r r

1
a, or ra <<1, the approximation of —- has the form

r
of [5]
1 _ddle” (33)
]/-2 - (l_qe—Zar)Z
1 4a’e™ (34)

r_2 (l _ qe—2ar )2

The two approximations are basically the
same since the graphs of both approximations
overlap. To obtain the exact solution in equation

—ra

e
(32), the —— term is substituted by approximation
r

—2ra e—m 1
—, —,and —
r r r

in equation (34), while the

terms are substituted by equation (33), and therefore
equation (32) becomes

d’  4x(k-Dd’e™"  8xV,a'e™”
dr? (1 —ge )2 (1 —ge )2

2 2
dg e

(l —ge”” )2
, 2ae™ 4g%e™

Va?
(l—qeizar)_k 24 (l_qefzm)2

Va2672ra 1+ e—2m
((l_oqe—Zm)Z g ’ 1 —2ra (E”’K_M)Gﬂl((r)

=—(Ep’ —M?)G, (") (3%5)

2 4 2
—Vae ™™

G, (r) -

+V,a

1—ge

By applying the definition of g-deformed
hyperbolic function in equation (12) and the relation
between deformed and non-deformed hyperbolic
function in equation (14b), equation (35) is rewritten
in terms of hyperbolic functions as

2 _ 2 2 4
a’i2 _ KFK l)a2 _ - xV,a G,
dr (smhq ar) (smhq ar)
+(V2a4 cosh, ar —sinh  ar V,a*

G
Jgsinh, ar " (sinhq ar)2 J (")

(q +2sinh’, ar — 2sinh, arcosh, ar)

2 6
-V, a

q(sinhq ar)2 G (1)

nK

)
S K SRS CR NS
Sin qar

=—(E, —M?)G,.(r) (36)
By setting
A, =(k+V,a’ -1) (x+V,@’)-Vy(M-E,)  (37)
2 2 4
B, =0 2 g,y G8)
Ja a
g 2Eat Vat (En—M7) (39)

q Ja

in equation (36), equation (36) reduces to a one-
dimensional Schrodinger-type equation

2 24

diz_ai”zﬂzzB coth, ar+G, (r)=d’E'G,(r) (40)

dr . ps q " "
(smhqar)

By  substitution of spatial variable,

coth, ar = ix in equation (40) we obtain
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d? d
(1+x2) d)(c;zm( + 2x 5an

2B "x 2 []
ql ps; _1q Ez]Gn,(:O
+ X + X (41)

- (qus +

To solve equation (41) we use equation (17) as a
new wavefunction,

1

p 1tan’ X
Gm«(x) =&, (x)= (1 +X2F€ g D,(zﬂ’a)(x) (42)

and after manipulating equations (41) and (42) we
obtain

)\0°D oD
(1+x )ax2 +2x(B+1) a}ax
aZ
,Bax——+ﬂ2+q2Bpsix—q2E'
4 g +qd, ~ - BID=0
1+x
(43)

Equation (43) reduces to differential equation
which is satisfied by Romanovski polynomials in

equation (21) if the coefficient of the e term is
+X
set to zero, as follows:
2

—%r+ﬁ2—fE”:0Mﬂﬁh+1meﬁ:O (44)
and equation (43) becomes

oD oD
(1+x2)§+{2x(ﬂ+l)—a}g—{qflm -p*-pip=0  (45)

By comparing the parameters in equations
(21) and (45) we obtain the following relation:

APS —ﬂz — LB =nn—-1)+2n(1—p).

2B+ =2(-p+handa=—¢' (46)

From equation (46) we have p=—/, and since
p >0, the value of f obtained from equation (46)
which has physical meaning is

1 1
=B, =—|A +——n-—=
ﬂ IBn s 4 n 2
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(47)

By using equations (44) and (47) we obtain

o = — qZBpSi =

Y

qupSi

\/A S,+i +n+l
”4 2

The values of [ obtained from equation (44) is

(48)

given as

2 ) 4 2 4 pR2
5 - qE i\/q E"—q B,

2

(49)

The energy eigenvalues obtained from equations
(47) and (49) are

qu'i /q4Ev2_q4B;S 1 2
=|.|A4,+—+n+—
2 7 2
that gives
2V7a®  Vy,a®

2 ar2)
(EmcM) q+\/q_

2 252
anpS

2
4 ,’As+i+n+i
2 4 2
2
a’ 1 1
——5 | \|Aps +— t+
q 4 2

with

(50)

A, =( x+V,d =1)(x+V,d* )V, (M ~E,)
va: | 2via

q q

and B = ~V(M -E,,)

The relativistic energy of a nucleon in the
field of q-deformed Eckart potential combined with
Yukawa—type tensor potential can be obtained using
Romanovski polynomials for exact pseudospin
symmetry; the result is given in (50). Equation (50)
is a transcendental equation. Therefore, the
relativistic energy can not be calculated explicitly
but it can be calculated numerically using Matlab
programming. The energy in equation (50) reduces
to the relativistic energy of nucleon in q-deformed
Eckart potential field in the absence of Yukawa-type
tensor potential when V, =0.

To determine the wave function, equations
(47) and (48) are inserted into equations (24)
and (29) so that we obtain the weight function
w() and the Romanovski  polynomials

R = R“P=)(x) as
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o tan L
wl Pl = (1+x2 )ﬂ" e

ia

=(1-cothra)" 2 (1+cothra)™ 2 (51)
And
, w 1
R’(lp,q)(x) =Rr(: a )(I") = By —a tanl(x)
1+x2) e T Y
" n —a an71 x
X;;" {(1+x2)ﬂ”+ e ntan )} (52)

where we have applied trigonometric-hyperbolic
functions relation given as

%n -1 [ I P
——tan™ x ——tan™ " (—icoth(ar))
e ? =e ?
o,
_( 1+coth(ra) \ 4
1 —coth(ra)

(53)

where B, and «, are as expressed in equations

(47) and (48). As a result, the wave function of the
nth level, which is the lower spinor component of
the nucleon, is given by

& ﬂtan_lx
G, (f(x)) = (1+x2) Ze? R,(fﬁ’_a)(x) (54)
or
ﬁn iarl
G, (r)=(1—-coth(ra))2 4 (55)

By iy
x(1+coth(ra))2 " 4 R(fﬂ’fa)(—icoth(m))

n

The upper spinor component obtained by using
equations (1)-(3) is given as

d—K+U@0
G

dr r

(56)
M—E,, "

F(r)= (

For this exact pseudospin-symmetric case, the
upper spinor component is obtained by using the
lower spinor component expressed in equation (54)
or (55). Also, it is required that E, # M for

equation (56) to exist; this means that under the
pseudospin symmetry the nucleon has negative
energy.

Since the B, and «, parameters, expressed
in equations (47) and (48), are dependent on #, then
the orthogonality of the wave functions may not

imply the orthogonality integral of the polynomials
[45], that is

[ x, (M x . (r)dr =0,
0

# [WPTORTP T ()R dx
1

(57)

By carrying out the differentiations of equation (52),
we find the four lowest unnormalized Romanovski
polynomials as

R0y <1

(58)
RV () =(p +1)22-4, (59)
R0 =2(,+2)(25,+3)
20, (2B, +3)x+ai +2, +4 (60)
R () = 40 (8, +3)28,+ 5B +2)
—60£3x2 2B, +5) (B +2)
+2x(6 8%, +3a; B, + 283, + 6] +34)
2a,(2f,+5)—a(a’ +25+6) (61)

The four lowest degrees of unnormalized radial
wave functions for arbitrary values of [ are
calculated by using equations (55) and (58)-(61). It
can be seen that the Romanovski polynomials are
complex function for odd degrees polynomials but

they are real functions for even degrees
polynomials.
The three lowest unnormalized wave

functions for any x values obtained from equations
(55) and (58)-(60) are

11
4 2 2
Gy (1) =(1-coth(ra))| " 5, ¢ Bps/z{ Aps*4+2]

1.1

A A+
ps 42 o , 1.1
5 +q Bps/4[ Aps+4+2J ©2)

x(1+coth(ra))

1,3
A +-+5
—@‘quB /4[ A +1+3]]
ps \] ps 4

G, (1) =(1- coth(m))| 2 2
1.3
A +-+>
A LR R V7 N Vi
x(1+coth(m))+ 2 T s [ RN

(63)

2, .
f 1 q° B
X3 2[4, +—+1 icothar - ——2
4 1 3
A])s -
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fA +1+é
psi“_,_qupS /4[ éA +l +5]

Gy () = (1-coth(ra))| 2 LN

?A +1+é
P42 2—q23ps/4[ &A +1+5]

x(1+coth(ra)) 2 P42
1 1 2
x<—| 4 A""+Z+2 A"S+Z+1 coth” ar

49°B,,

[ ’Ap?+1+1]cothar
[ 1.5 -4
( Api\,++]
4 2
2
—{q“Bi /(W/A . A1 +5j }—(2,//1 _+l +1j} (64)
B s 4 2 s 4

where A4, and B, are as given in equations (37)
and (38).

+

Exact spin-symmetric case

The Dirac equation of g-deformed Eckart
potential with Yukawa-type tensor potential for
exact spin symmetry where X(7) is q-deformed
Eckart potential and U(r) is Yukawa-type tensor
potential, given as

[ e 2y 2 g
dr r r dr

(B =M )E, ()= E, + M)F, () =0 (65)

By inserting q-deformed Eckart potential and
Yukawa-type tensor potential in equations (10) and
(11) into equation (64) we have

—2ra —ra —ra

e e e
—(V22a4 —+V,a' —+V,a’ — JF (r

r r r

—2ra

}(am FMIEL()

—2ra

a4V € —
0 (l_qe—Zm)Z

e, -M7 ), )

1+ge

'1- qe
(66)

The solution of equation (66) is worked out
similarly to the solution of equation (32). By
repeating the steps from equation (33) - (64) we

120

obtain the relativistic energy for exact spin
symmetry. For spin symmetry we set
A, :(K+V2a2+1) (K+Vza2)+V0(EnK+M) (67)
2 2 _4
B =-02 24 g, ) 68)
Ja o a
g2t va’ (B —M?) (69)

K] q \/g aZ

As expected, the equations for 4 and B, are also
obtainable from A, and B, -equations (37) and

(38) by applying equation (9a).

By inserting equations (67) - (69) into
equation (67) and by changing the exponential
function into hyperbolic function we have

d’ a*4 ) ) 70
— -7y taB, cothq ariF, (r)=a’E'F, () (70)
{dr ismhq ari

By substitution of variable and wave function
respectively, expressed as
coth, ar =ix and

-1

DY)

ﬁS

F (=g m=(+r)e? " )

in equation (70), we obtain

2
(1+x2)68D+{2x(ﬁ+1)—a %_

2
29

2
ﬂm—%+ﬂ2 +¢’Bix—q’E'

72
. gt -p-pp=0 (7

By comparing equation (72) with equation
(21) we obtain the relativistic energy for the nucleon

(EjK_M2): 2V22aﬁ - V2a4 ~
q

2
2 2pn2 2
a'q’B a 1 1
g > > —— ‘,Ax+—+n+—
4| JA, +—+n+—

T4 2

and D,Sﬂ @) = R,(l_"” ~*)(x) with the values of A and
B_ are expressed in equation (67) and (68).

S

(73)

Without the presence of the Yukawa—type
tensor coupling potential, when FV,=0 and
xk(xk+1)=1(l+1) we get
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A =10+ +V,(E, +M) (74)
B, =V|(E,.+M) (75)
(2 —M)
E '=— 5 (76)
a

and equation (73) reduces to

a’q* V7 (B, +M)

(Ef,( _MZ):_ 2
4(\/1(1+1)+V°(E"”+M)+41L+n+;j
2 1 1Y
—a—z \/l(l+1)+VO(EM_+M)++n+ (77)
q 4 2
Vy . V. .
Further, weset j, 0.5 V> L E +M=2u;
2u

and (E,fK —Mz): 2uE,, where E, =E, —Mis
the non-relativistic energy of Eckart potential with
centrifugal term. Therefore, for ¢ = 1, the relativistic
energy in equation (77) becomes the non-relativistic
energy of Eckart potential with centrifugal term as

follows

2
1 1 1
E :_2ﬂ{qzaz(l/lz)/{,/l(l+1)+V0 *7 +n+2J
2 2
+a—2[1/1(1+1)+l/0+l +n+lJ }
q 4 2

The upper spinor components
equation (54), with A, expressed in equation (67)

(78)

obtained from

and B, in equation (68), are given as

Pn = -1

F(f0))=(14+x)2 ¢ 2

X

R )(x) (79)

1

(1 + x2 )ﬂ” e n tan—1x

R () =

dn 2 Pn+n tan—! )
x——((1+x e n * (80)
dx" <( )
With
1 1
= =—,A - n—— (81a)
ﬁn ﬂsn s +4 n 2
2
9 Bii
(04 =
" 81b
\/AY+1 +n+l (810)
s 4 2

By using equations (67) and (68) together
with equations (62)-(64) we obtain the Romanovski
polynomials for the three lowest upper components
of Dirac spinors. The lowest spinor component for
exact spin symmetric case is obtained from equation
(79) as

(d + X U(r)]
G =~ ZF, 82)

with E,_#-—M . This condition leads to the

relativistic energy of the nucleon for exact spin
symmetry being always positive.

CONCLUSION

The Dirac equation for q-deformed Eckart
potential with Yukawa-type tensor potential is
solved exactly using Romanovski polynomial within
the approximation scheme proposed by Greene and
Aldrich. There are two solution types: exact
pseudospin symmetry and exact spin symmetry. For
the exact pseudospin symmetry solution, we directly
obtain the lower spinor component and find that
relativistic energy of the nucleon is always negative.
In this case, the upper spinor component of moving
nucleon is found from the lower one. For the exact
spin symmetry solution, the upper spinor component
is obtained directly from the Dirac equation. It is
found that the relativistic energy of the moving
nucleon is always positive. The difference between
the lower spinor component for pseudospin-
symmetric case and the upper spinor component for
spin-symmetric case is on the values of 4 and B
parameters in both Dirac equations. Without the
presence of the tensor potential for exact spin-
symmetric case, the relativistic energy of the system
reduces to the non-relativistic energy of q-deformed
Eckart potential with centrifugal term in the non-
relativistic limit.
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