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The motion of a nucleon in q-deformed Eckart potential field coupled with Yukawa-

type tensor potential is described by using Dirac equation. The bound state solutions 

of Dirac equation for q-deformed Eckart potential with Yukawa-type tensor 

potential under exact spin- and pseudospin-symmetric limit are obtained using finite 

Romanovski polynomials. The approximate relativistic energy spectra are exactly 

obtained within the approximation scheme of centrifugal term. The relativistic 

energy is negative for pseudospin symmetry and positive for spin symmetry. The 

radial component of Dirac spinors are obtained in terms of Romanovski 

polynomials under exact spin- and pseudospin-symmetric conditions. The 

relativistic energy spectrum for the exact spin-symmetric case reduces to non-

relativistic energy spectrum in the non-relativistic limit. 
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INTRODUCTION 
 

The bound state solutions of Dirac equations 

for some central/non-central physical potentials, 

which are mixtures of attractive scalar potential S(r), 

repulsive vector potential V(r), and tensor 

interaction potential U(r), have been intensively 

investigated since they have important applications 

in quantum chemistry and nuclear physics. Dirac 

equations are used to describe the motion of 

particles governed by strong force when relativistic 

effects are taken into account. Dirac equations for 

central/non-central potentials together with/without 

tensor potentials have been solved by Nikiforov-

Uvarov (NU) method [1-5], factorization method 

and supersymmetric quantum mechanics (Susy QM) 

[6], hypergeometric and confluent hypergeometric 

methods [7,8], and asymptotic iteration method [9]. 

Dirac equations with central/non-central potential 

are solvable exactly only for the s-wave For the              

l-wave, they are only solved approximately due to 

the contribution of the centrifugal term. The 

approximation scheme of the centrifugal term was 

proposed by Greene and Aldrich [10] and this 
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approximation works well for hyperbolic/ 

exponential and trigonometric potentials.  

Dirac equations with specific condition,  

where the substraction of the repulsive vector 

potential by an attractive scalar potential results in 

zero, have also been investigated recently. The 

potentials investigated include, among others, 

Makarov potentials [11,12], ring-shaped oscillator 

potentials [13], ring- shaped non-spherical harmonic 

oscillator potentials [14,15], Coulomb potentials 

plus new ring-shaped potentials [16], and Hartmann 

potential plus new ring-shaped potential [17,18]. 

Those potentials are widely used in studying the 

relativistic effects of the distorted nucleus, the 

interaction between the ring-shaped molecules, and 

complex vibration-rotation energy structure of 

multi-electron atom. 

The solution of Dirac equation with special 

cases of spin symmetry and pseudospin symmetry 

have been investigated for some typical potentials 

[19,20]. Spin-symmetric and pseudospin-symmetric 

concepts have been used to study the aspects of 

deformed and superdeformed nuclei in nuclear 

physics. The concept of spin symmetry has been 

applied to the spectra of meson and antinucleon 

[21], and the pseudospin symmetry concept is used 

to explain the quasi-degeneracy of nucleon doublets 
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[22], exotic nuclei [23], and superdeformation in 

nuclei [24], and to establish an affective nuclear 

shell-model scheme [25]. Spin symmetry occurs 

when the repulsive vector potential subtracted by 

the attractive scalar potential is equal to a constant 

[26], while pseudospin symmetry arises when the 

sum of the scalar potential with vector potential is 

equal to a constant [21,27]. 

Quantum deformation has been studied 

recently due to its relation with applications in 

nuclear physics [28], statistical-quantum theory and 

conformal field theory [29]. The q-deformation of 

hyperbolic potential, which was introduced by Arai 

[30],  has been investigated by some authors 

[31,32]. Sauza Dutra [33] has reinterpreted the idea 

of q-deformed potential as a kind of parameter 

scaling symmetry of the model, so the q-deformed 

system is not a new class of potential. The                     

q-deformed hyperbolic potential can be transformed 

to non-deformed hyperbolic potential or vice-versa 

by using translation of spatial variable. 

In this paper, the relativistic energies and 

wave functions of q-deformed Eckart potentials with 

Yukawa-type tensor potentials [8] are analyzed 

using finite Romanovski polynomials. The Eckart 

potential is an anharmonic potential which is                   

used  to  describe diatomic molecular energy 

spectra, electromagnetic transitions, and the 

internuclear potential in diatomic molecules  

[34,35]. The spherically symmetric Eckart-type 

potential is also used as molecular potential model 

which has been applied in chemical physics. The 

Yukawa potential, also known asthe screened 

Coulomb potential, was originally used to model 

strong nucleon-nucleon interactions caused by 

exchange interactions in nuclear physics and to 

explain the cloud of electronic charges around the 

nucleus [36,37]. The Yukawa potential was 

proposed to build the meson theory which describes 

nucleon-nucleon interactions [38,39]. 

The finite Romanovski polynomial is a 

traditional method which consists of reducing 

Schrödinger equation by an appropriate change of 

variable to attain a form of generalized 

hypergeometric equation [40]. The polynomial was 

discovered by Sir E.J. Routh [41] and rediscovered 

45 years later by V.I. Romanovski [42]. The term 

“finite” refers to the observation that for any given 

set of parameters (i.e. at any potential) only a finite 

number of polynomials appear orthogonal [43]. We 

apply the Romanovski polynomial method since this 

method is simpler than the NU method for obtaining 

the energy spectrum and the wave function, 

although there are limitations in determining the 

normalization of the wave function. Until recently, 

only few researcher used Romanovski polynomials 

to solve Schrödinger equation for certain potentials 

[44-46]. 

This paper is organized as follows. A brief 

review of the Dirac equation and the q-deformed 

potential are next presented in the second section. 

The finite Romanovski polynomials as an analysis 

method is presented in the third section. Solutions of 

Dirac equations, results, and discussions are 

presented in the fourth section. Finally, the last 

section presents a brief conclusion. 

 

 

THEORY 
 

Basic equations of diracspinors 
 

A Dirac equation which describes the motion 

of a nucleon with mass M in a combined potential 

which includes a repulsive vector potential V(r), an 

attractive scalar potential S(r), and a tensor potential 

U(r) is given as [8,47-49]: 
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Where E is the relativistic energy and p


 is the three 

dimensional momentum operator,  i , 
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where   is the three dimensional Pauli matrix, I is 

the 2 2  identity matrix, and U(r) is a tensor 

potential. Here we consider the matrix potential in 

equation (1) as a spherically symmetric potential; 

thus, they only depend on the radial coordinate 

r r


 and we have taken 1 , c = 1. The Dirac 

equation expressed in equation (1) is invariant under 

spatial inversion, and the refore its eigenstates have 

definite parity. 

The spinors are then written as 
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where  r


 is the upper (large) spinor component 

of the wave function and  r


is the lower (small) 

spinor component, ( , )l

jmY   is spin-spherical 

harmonics, ( , )l

jmY   is pseudospin-spherical 

harmonics, and m is the projection of the angular 
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dr

dU

dr

dU


momentum on the z-axis. The Hamiltonian of Dirac 
equation in a spherical field commutes with the total 

angular momentum operator J


 and the spin-orbit 

coupling operator K


,  . 1K L   


 with L


 being 

the orbital angular momentum. The eigenvalues of 
the spin-orbit coupling operator are 

 1/ 2 0J     for unaligned spin 

1/2 3/2( , ,...)p d and  1/ 2 0J      for aligned 

spin 1/2 3/2( , ,...)s p . Therefore the conservative 

quantities  consist of the set of , , , zH K J J
  

. 

Inserting  equations  (3) and (2) into equation (1), 
we obtain 
 

 
 

  
 

From the matrices multiplication in equation (4) we 

obtain the upper and lower radial part of the Dirac 

equation, respectively, as 

 

 

 (5) 
 

And 
 

 (6) 
 

where the spin-orbit quantum number  is related 

to the usual orbital angular momentum by

( 1) ( 1)l l      
which corresponds to the upper 

spinor component and is related to pseudo-orbital 

angular momentum by ( 1) ( 1)l l    
 

for the 

lower spinor component, ( ) ( ) ( )r V r S r   is the 

sum of scalar and vector potentials, and 

( ) ( ) ( )r V r S r   is the vector potential 

subtracted by the scalar potential. 

Pseudospin symmetry occurs when 

( ) ( ) ( ) psr V r S r C    is constant, therefore the 

Dirac equation for the lower spinor in equation (6) 

reduces to 

 

  
 

with ( 1) ( 1)l l     , where is the pseudo-

orbital  angular  quantum number : l    for

0   and ( 1)l    for 0  . Also,

/l l    . These conditions imply that the total 

angular momentum 
1

2
j l   is degenerate for 

0l   [50,51]. 

 

Further, the exact pseudospin symmetry    

arises when      ,  and the 

q-deformed Eckart potential expressed in         

equation (10) is . Therefore, 

equation (7) becomes 

 

 

  
 

On the other hand, the exact spin symmetry occurs 

when, ( ) ( ) ( ) 0r V r S r    and ( ) ( ) ( )r V r S r    
is the q-deformed Eckart potential expressed in 

equation (18). Therefore for exact spin symmetry, 

the Dirac equation for the upper spinor expressed in 

equation (5) becomes 
 

 

  
 

The Dirac equations for both the exact 

pseudospin symmetry and the exact spin symmetry 

in equations (8) and (9) are solved using 

Romanovski polynomials. By solving the Dirac 

equation for the pseudospin-symmetric case in 

equation (8), one can obtain the solution of the spin-

symmetric case in equation (9) by changing the 

solution by 

 

; 
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therefore the Dirac equation is readily solvable. 
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Review of q-deformed hyperbolic function 
 

The q-deformed Eckart potential and the 

Yukawa-type tensor potential are given as: 
 

 (10) 

 (11) 
 

V0  and  V1 represent the depth of the Eckart potential 

well and are positive. Also, V1 > V0. Further, a  is a 

positive parameter which controls the width or the 

range of the potential well; q > 0 is the deformation 

parameter of the potential; V2 is the strength of the 

nucleon force; and a is the range of nucleon force 

[53], while M is the mass of the particle. Here

0 r  . 

The q-deformed hyperbolic potential as 

introduced by Arai [30] some years ago is defined 

as 
 

sinh 1
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By a convenient translation of the spatial 

variable, one can transform deformed potentials to 

the corresponding non-deformed ones or vice-versa. 

By using a translation of spatial variable introduced 

by Dutra [33] 
 

ln q
r r


   (13a) 

 

the deformed potential in equation (12) changes into 

a non-deformed one given as  
 

 
tanh tanhq r r  z (13b) 

 

In the same way, by applying the translation of 

spatial variable 
 

ln q
r r


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to the non-deformed hyperbolic function potential 

we obtain the deformed potential as 
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r
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
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cosh
cosh

q r
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q


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The translation of spatial variable in equation 

(13b) was used to map the energy and wave 

function of non-deformed potential into deformed 

forms of modified Poschl-Teller and of hyperbolic 

Scarf potentials [32]. By applying the concept of 

hyperbolic functions and the translation of spatial 

variable, the Dirac equation for q-deformed Eckart 

potential combined with Yukawa-type tensor 

potential is expressed in hyperbolic functions. 

 
 
EXPERIMENTAL METHODS 
 

For exact spin and pseudospin symmetries, 

the Dirac equation for q-deformed Eckart potential 

within the Yukawa type tensor reduces to 

Schrödinger-type equation. Therefore, it can be 

solved using Romanovski polynomials. The one-

dimensional second order differential equation 

satisfied by Romanovski polynomials is developed 

based on hypergeometric differential equations.           

The one-dimensional Schrödinger equation of 

potential of interest reduces to the differential 

equation of Romanovski polynomial by appropriate 

variable and wave function substitutions.                    

The general one-dimensional Schrödinger equation 

is given as 
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where V (x) is an effective potential which is mostly 

shape-invariant potential, M is the mass of particle, 

E is the energy eigenvalue of particle. By suitable 

variable substitution x = f(s) in equation (15) then it 

changes into generalized hypergeometric type 

equation expressed as  
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with )(s and )(~ s are mostly polynomials of order 

two, )(~ s  is polynomial of order one, s, )(s , 

)(~ s , and )(~ s can have any real or complex 

values [55]. Equation (16) is solved using variable 

separation method by introducing new wave 

function given as 
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such that we obtain a hypergeometric type 

differential equation, which is satisfied by finite 

Romanovski polynomials [44,53] is expressed as 
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For Romanovski polynomials, the values of 

parameters in equation (19) are  

 
 

a =1, b =0, c =1, f =2(1 – p);h = q’ ; p > 0 (20) 

 

therefore by considering equations (19) and (20) we 

can rewrite equation (18) as 
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Equation (21) is second order differential equation 

satisfied by Romanovski polynomials with  
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Equation (18) is described in the textbook by 

Nikiforov-Uvarov [55] where it is cast into self 

adjoint form and its weight function, w(s), satisfies 

Pearson differential equation 
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The weight function, w(s), is obtained by 

solving the Pearson differential equation and by 

applying condition in equations (19) and (20), so we 

get 
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The corresponding polynomials are classified 

according to the weight function, and are built up 

from the Rodrigues representation which is 

presented as 
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with Bn is a normalization constant, and for 

0)( s  
and w(s)>0, yn(s)’s are normalized 

polynomials and are orthogonal with respect to the 

weight function w(s) within a given interval (s1, s2) , 

which is expressed as 
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This weight function in equation (24) first 

reported by Routh [41] and then by Romanovski 

[42]. The polynomial associated with equation (25) 

are named after Romanovski and will be denoted by
( , ) ( )p q

nR s . Due to the decrease of the weight function 

by 
ps 2

, integral of the type 
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will be convergent only if  

 

12'  pnn  (28) 
 

This means that only a finite number of Romanovski 

polynomials are orthogonal, and the orthogonality 

integral of the polynomial is expressed similar to the 

equation (26) where )()',( sRy qp

nn  . 

The heart of Romanovski polynomials 

method is in obtaining differential equation that has 

similar form with equation (21) from one-

dimensional Schrödinger equation. The Schrödinger 

equation of the potential of interest will reduce into 

second order differential equation that is similar to 

equation (21) by an appropriate transformation of 

variable, for example, r = f(s), such that generalized 

hypergeometric equation expressed in equation (16) 

is obtained. Then equation 16-type is being solved 

using variable separation method by substituting a 

new wave function given in equation (17) and 

finally we get new equation in the form of equation 

(21) with  and  parameters. By comparing 

equation (21) and new equation, we get the relation 

between  with p, and  with q’. The Romanovski 

polynomials obtained from Rodrigues formula 

expressed in equation (25) with the corresponding 

weight function in equation (24) is expressed as 
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If the wave function of the n
th
 level in equation (17) 

is rewritten as 
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then the orthogonality integral of the wave functions 

expressed in equation (30) gives rise to 

orthogonality integral of the finite Romanovski 

polynomials, that is given as 
 

' '

( , ') ( , ') ( , ')

0

( ) ( ) ( ) ( )p q p q p q

n nn n
r r dr w R s R s ds

 



     (31) 

 

In this case, the values of p and q’ are not 

dependent on the degree of polynomials n.  

However, if either equation (26) or (28) is not 

fulfilled then the Romanovski polynomials is 

infinity [43,45]. The lower and upper components of 

Dirac spinors are expressed as wave function in 

equation (17). 

 

 

RESULTS AND DISCUSSION 
 

Exact pseudospin-symmetric case 
 

By inserting q-deformed Eckart potential and 

Yukawa-type tensor potential into equation (8) we 

have 
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Equation (32) can not be solved exactly unless we 

use approximation to the 
2

1

r  
and 

1

r  
terms. For small 

a, or 1ra  , the approximation of 
2

1

r  

has the form 

of [5] 
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The two approximations are basically the 

same since the graphs of both approximations 

overlap. To obtain the exact solution in equation 

(32), the 
2r

e ra

 term is substituted by approximation 

in equation (34), while the 
2

2

r

e ra

, 
r

e ra

, and 
2

1

r  

terms are substituted by equation (33), and therefore 

equation (32) becomes 
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By applying the definition of q-deformed 

hyperbolic function in equation (12) and the relation 

between deformed and non-deformed hyperbolic 

function in equation (14b), equation (35) is rewritten 

in terms of hyperbolic functions as 
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By setting 
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in equation (36), equation (36) reduces to a one-

dimensional Schrödinger-type equation 
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By substitution of spatial variable, 

cothq ar ix in equation (40) we obtain 
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 (41) 

 

To solve equation (41) we use equation (17) as a 

new wavefunction, 

 

 (42) 

 

and after manipulating equations (41) and (42) we 

obtain 

 

 (43) 

 

Equation (43) reduces to differential equation 

which is satisfied by Romanovski polynomials in 

equation (21) if the coefficient of the  
2

1

1 x
 term is 

set to zero, as follows: 
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q E
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and equation (43) becomes 
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By comparing the parameters in equations 

(21) and (45) we obtain the following relation: 
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From equation (46) we have p   , and since 

0p  , the value of  obtained from equation (46) 

which has physical meaning is 
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By using equations (44) and (47) we obtain 
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The values of   obtained from equation (44) is 

given as 
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The energy eigenvalues obtained from equations 

(47) and (49) are 
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that gives 
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with  
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The relativistic energy of a nucleon in the 

field of q-deformed Eckart potential combined with 

Yukawa–type tensor potential can be obtained using 

Romanovski polynomials for exact pseudospin 

symmetry; the result is given in (50). Equation (50) 

is a transcendental equation. Therefore, the 

relativistic energy can not be calculated explicitly 

but it can be calculated numerically using Matlab 

programming. The energy in equation (50) reduces 

to the relativistic energy of nucleon in q-deformed 

Eckart potential field in the absence of Yukawa-type 

tensor potential when 2 0V  . 

To determine the wave function, equations 

(47) and (48) are inserted into equations (24)            

and (29) so that we obtain the weight function            

w(x) and the Romanovski polynomials 
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where we have applied trigonometric-hyperbolic 

functions relation given as 
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where n  and n  are as expressed in equations           

(47) and (48). As a result, the wave function of the 

nth level, which is the lower spinor component of 

the nucleon, is given by 
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The upper spinor component obtained by using 

equations (1)-(3) is given as 
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For this exact pseudospin-symmetric case, the 

upper spinor component is obtained by using the 

lower spinor component expressed in equation (54) 

or (55). Also, it is required that MEn   for 

equation (56) to exist; this means that under the 

pseudospin symmetry the nucleon has negative 

energy. 

Since the n  and n  parameters, expressed 

in equations (47) and (48), are dependent on n, then 

the orthogonality of the wave functions may not 

imply the orthogonality integral of the polynomials 

[45], that is 
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By carrying out the differentiations of equation (52), 

we find the four lowest unnormalized Romanovski 

polynomials as 
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The four lowest degrees of unnormalized radial 

wave functions for arbitrary values of l are 

calculated by using equations (55) and (58)-(61). It 

can be seen that the Romanovski polynomials are 

complex function for odd degrees polynomials but 

they are real functions for even degrees 

polynomials. 

The three lowest unnormalized wave 

functions for any  values obtained from equations 

(55) and (58)-(60) are 
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where psA and psB are as given in equations (37) 

and (38).  

 

 

Exact spin-symmetric case 
 

The Dirac equation of q-deformed Eckart 

potential with Yukawa-type tensor potential for 

exact spin symmetry where )(r  is q-deformed 

Eckart potential and U(r) is Yukawa-type tensor 

potential, given as 
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By inserting q-deformed Eckart potential and 

Yukawa-type tensor potential in equations (10) and 

(11) into equation (64) we have 

 

 (66) 

 

The solution of equation (66) is worked out 

similarly to the solution of equation (32). By 

repeating the steps from equation (33) - (64) we 

obtain the relativistic energy for exact spin 

symmetry. For spin symmetry we set  
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As expected, the equations for sA and sB are also 

obtainable from psA and psB  equations (37) and 

(38) by applying equation (9a). 

By inserting equations (67) - (69) into 

equation (67) and by changing the exponential 

function into hyperbolic function we have 
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By substitution of variable and wave function 

respectively, expressed as 
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in equation (70), we obtain 
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By comparing equation (72) with equation 

(21) we obtain the relativistic energy for the nucleon 
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and 
    )(,, xRD nn

  with the values of sA and

sB are expressed in equation (67) and (68).
 

Without the presence of the Yukawa–type 

tensor coupling potential, when V2=0 and 
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and equation (73) reduces to  

 

   

 
2

0

22

1

22

22

2

1

4

1
)1(4



















nMEVll

MEVqa
ME

n

n

n






 
 

2

02

2

2

1

4

1
)1(














 nMEVll

q

a
n

 (77) 

 

Further, weset 
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and   NRn EME  222   where MEE nNR   is 

the non-relativistic energy of Eckart potential with 

centrifugal term. Therefore, for q = 1, the relativistic 

energy in equation (77) becomes the non-relativistic 

energy of Eckart potential with centrifugal term as 

follows 
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The upper spinor components obtained from 

equation (54), with sA  expressed in equation (67) 

and sB  in equation (68), are given as 
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With 
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By using equations (67) and (68) together 

with equations (62)-(64) we obtain the Romanovski 

polynomials for the three lowest upper components 

of Dirac spinors. The lowest spinor component for 

exact spin symmetric case is obtained from equation 

(79) as 
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with nE M   . This condition leads to the 

relativistic energy of the nucleon for exact spin 

symmetry being always positive. 

 
 

CONCLUSION 
 

The Dirac equation for q-deformed Eckart 

potential with Yukawa-type tensor potential is 

solved exactly using Romanovski polynomial within 

the approximation scheme proposed by Greene and 

Aldrich. There are two solution types: exact 

pseudospin symmetry and exact spin symmetry. For 

the exact pseudospin symmetry solution, we directly 

obtain the lower spinor component and find that 

relativistic energy of the nucleon is always negative. 

In this case, the upper spinor component of moving 

nucleon is found from the lower one. For the exact 

spin symmetry solution, the upper spinor component 

is obtained directly from the Dirac equation. It is 

found that the relativistic energy of the moving 

nucleon is always positive. The difference between 

the lower spinor component for pseudospin-

symmetric case and the upper spinor component for 

spin-symmetric case is on the values of A and B 

parameters in both Dirac equations. Without the 

presence of the tensor potential for exact spin-

symmetric case, the relativistic energy of the system 

reduces to the non-relativistic energy of q-deformed 

Eckart potential with centrifugal term in the non-

relativistic limit. 
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