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This paper presents approximate analytical solutions of the Dirac equation for the 

Hulthén potential with position-dependent mass within the framework of 

pseudospin symmetry limit using the Nikiforov-Uvarov method. The results showed 

the relativistic energy spectrum and the corresponding un-normalized wave function 

expressed in terms of the Jacobi polynomials.  
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INTRODUCTION 
 

The Dirac equation with position-dependent 

mass (PDM) formulation has attracted a lot of 

interest in recent years because of its application in 

particle, nuclear, semiconductor and condensed 

matter physics [1]. In more precise words,                   

PDM quantum systems have been found to be very 

useful in the analysis of microstructures such as 

quantum liquids [2,3], quantum dots [4], quantum 

wells [5], and semiconductor heterostructures [6]. 

Different authors have investigated the PDM for 

nonrelativistic quantum mechanics using various 

techniques [7,8]. The relativistic Dirac equation 

with PDM has been used to analyze heavy atoms 

and heavy ion doping [9]. In the Dirac equation, the 

pseudospin symmetry occurs when the magnitude of 

the attractive Lorentz scalar potential S(r) and 

repulsive vector potential V(r) are nearly equal but 

opposite in sign [10-12]. The tensor interaction was 

introduced into the Dirac equation by the 

transformation ˆ. ( )p p im rU r   with spin-

orbit coupling term being added to the Dirac 

Hamiltonian [13]. In most of studies, due to the 

mathematical structure of the problem, the tensor 

interaction is considered as Coulomb-like[14-15] or 

Cornell interactions. Hassanabadi et al. were the 

first who introduced the Yukawa tensor interaction 
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in the Dirac theory and reported the corresponding 

approximate analytical solution [16].  

From the mathematical point of view, the 

Dirac equation possesses an exact analytical 

solution only for a few well-known potentials. In the 

three spatial dimensions, this is due to the inverse 

square term appearing in the Hamiltonian. In the 

past years, a variety of polynomial and exponential-

type potentials have been studied within the 

framework of the equation. In some of them, the 

tensor interaction is present and its effect on the 

degeneracy behavior of the system is investigated 

[17-21]. The main purpose of this article is to 

investigate the Dirac equation with a vector and 

scalar Hulthén potential for spin-1/2 particles and to 

obtain the approximate analytical solutions for an 

arbitrary spin-orbit coupling quantum number κ. 

The Hulthén interaction is one of the 

successful short-range potentials [22] which 

behaves like a Coulomb potential when 0r  . The 

potential has successfully accounted for some of the 

existing data in nuclear, particle, atomic, condensed 

matter, and chemical physics and has therefore been 

the subject of some related works in both 

nonrelativistic and relativistic regimes [23-26]. The 

Hulthén potential is a special case of the Manning–

Rosen potential. In addition, we can compare               

the potential with the general Möbius-square form 

of the Eckart potential by appropriately choosing  

the parameters. The  potential  has  the  form [22] 
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where V0’ α and z  are three real parameters and 

represent the strength, the screening range of the 

potential and the atomic number, respectively.                

In this paper, we consider the Hulthén potential with 

PDM besides a Yukawa tensor potential. 

 

 

EXPERIMENTAL METHODS 
 
The parametric nikiforov-uvarov method 

 

Within this section, we will introduce the 

simple but powerful Nikiforov-Uvarov (NU) 

technique which has solved many important 

problems in quantum mechanics [27,28]. According 

to the NU method, a second-order differential 

equation of the form 
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has the solutions [29,30] 
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 are the Jacobi polynomials and 
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Dirac equation with a tensor coupling  

 

Dirac equation with a tensor potential ( )U r  

is written as ( 1)c   [31] 
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where E is the relativistic energy of the system, 

p i    is the three-dimensional momentum 

operator and M is the mass of the fermionic particle. 

,   are the 4 4  Dirac matrices given as 
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where I is a 2 2 unit matrix and i  are the Pauli 

three-vector matrices defined as 
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For a spherical nuclei, the total               

angular momentum J  and spin-orbit 

operator ( . 1)K L    , where   denotes      

the Pauli matrices and L  is the orbital              

angular momentum operator, commute               

with Dirac Hamiltonian. The eigenvalues of                     

the spin-orbit coupling operator are 
1 1

( ) 0, ( ) 0
2 2

j j         for unaligned 

1

2
j l   and aligned spin 

1

2
j l   cases, 

respectively. The set  2, , , zH K J J  forms a 

complete set of conserved quantities. Thus, we can 

write the spinors as [32] 
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where ( ) ( )n nF r and G r   represent the upper and 

lower components of the Dirac spinors, respectively. 

( , ), ( , )l l

jm jmY Y     are the spin and pseudospin 

spherical harmonics and m is the projection               

on  the z-axis.  With  other  known  identities [33] 
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we obtain the coupled equations [33], 
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where, 

( ) ( ) ( ),r V r S r                        (14) 

( ) ( ) ( ).r V r S r                        (15) 
 

Eliminating one component in favor of the 

other, we obtain the second-order Schrödinger-like 

equations 
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with ( 1) ( 1), ( 1) ( 1)l l l l         . 

The mathematical  relation ( ) ( ) ( )d r d r d r

dr dr dr

  
    is   

the necessary relation to obtain exact or 

approximate  solutions for PDM  problems [34]. 

 
 
The pseudospin symmetry limit 

 

In the pseudospin symmetry limit, 

( )
0

d r
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
  or ( ) .psr C const   [10-12]. Here, 

we consider [7,22] 
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besides  the Yukawa tensor interaction [35] 
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where Z, µ0,V1 and α  are Coulomb charge,            

the rest reduced mass, potential depth and range of 

the nucleon force, respectively [26]. Obviously,              

the corresponding equation is not exactly solvable. 

Consequently, to provide an analytical solution,            

we have to proceed on an approximate basis. 

Therefore, we  introduce  the approximations [36] 
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which are plotted in Fig. 1. The combination of 

recent equations as well as a change of variable of 

the form
2 rs e  , yields 
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Comparing Eqs. (22) and (2), we  obtain the 

required parameters as 
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Eq. (5) determines the rest of the coefficients as 
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Using Eqs. (24) and (25), we can easily 

obtain the energy relation 
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The corresponding upper component can be 

simply obtained from Eq.(12), i.e.  
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RESULTS AND DISCUSSION 

 

Approximate solutions of the Dirac equation 

for the Hulthén potential were obtained in the 

absence and the presence of the Yukawa tensor 

potential for various values of the quantum numbers       

n  and  κ.  The  bound-states   are reported  in table 1 

under the condition of the pseudospin symmetry and 

we can clearly see the degenerate behavior between 

the bound-states which ischanged when the Yukawa 

tensor interaction is present. In Fig. 2, it is shown 

the effects of the α-parameter on the bound-states in 

the presence of the tensor potential (V1 = 0.5)  

where it is seen that for increasing α, the bound-

states become more bounded. In Fig. 3, the behavior 

of energy vs. Cps for pseudospin symmetry limit was 

obtained it can be seeing that the pseudospin bound-

states become less bounded with increasing Cps. 

Figure 4 represents the dependence of the bound-

state energy levels on the potential parameter z. It is 

seen that the pseudospin bound-states  become more 

bounded with increasing z. In Figs. 5 and 6, the 

effects of the tensor interaction parameters V1 and µ0 

on the bound-states in view of the pseudospin 

symmetry limit were determined respectively. 

Figure 5 shows that the magnitude of the energy 

difference between the degenerate states increases 

as H increases. In Fig. 6, it can be seen  that the 

bound-states become less bounded with increasing 

µ0. In Fig. 7, the wavefunctions are plotted for 

vanishing and existing tensor where we observe that 

the tensor interaction only affects the shape of the 

wave functions and does not change the node 

structure of the radial upper and lower components 

of the Dirac spinors. 
 

 

Table 1. Energies in the Pseudospin Symmetry Limit for α = 0.01, µ0= 1fm-1, z=-1, Cps = -5 
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Fig. 1. )and its approximations for α = 0.01. 

 

Fig. 2. Energy vs. α for pseudospin Symmetry limit for                        

µ0= 1fm-1, z=-1, Cps = -5, V1 = 0.5.  
 

 

 
 

Fig. 3. Energy vs. Cps for pseudospin Symmetry limit for                    

α = 0.01, µ0= 1fm-1, z=-1, V1 = 0.5.  

 

 
 

Fig. 4. Energy vs. z for pseudospin Symmetry limit for                   

α = 0.01, µ0= 1fm-1, Cps = -5, V1 = 0.5. 

 

 
 

Fig. 5. Energy vs. V1 for pseudospin Symmetry limit for               

α = 0.01, µ0= 1fm-1, z=-1, Cps = -5. 

 

 

 
 

Fig. 6. Energy vs. µ0 for pseudospin Symmetry limit for                   

α = 0.01, z=-1, Cps = -5, V1 = 0.5. 
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Fig. 7. Wavefunction for Pseudospin Symmetry Limit for                 

α = 0.01, µ0= 1fm-1, z=-1, Cps = -5, V1 = 0.5. 

 
 

CONCLUSION 
 

In this paper, was obtained the approximate 

analytical solutions of the Dirac equation for the 

Hulthén potential within the framework of PDM and 

in the presence of a Yukawa tensor interaction term 

within the framework of pseudospin symmetry limit 

using the NU method. The results show that the 

energy eigenvalues and corresponding lower and 

upper wave functions in terms of the Jacobi 

polynomials. Finally, this work can be extended to 

others potentials model [7,8,34] which has many 

applications in physics and related fields. 
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