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In a nuclear industry area, high temperature treatment of materials is a factor 

which requires special attention. Assessment needs to be conducted on the 

properties of the materials used, including the strength of the materials.                      

The measurement of material properties under thermal processes may reflect 

residual stresses. The use of Genetic Algorithm (GA) to determine the optimal 

residual stress is one way to determine the strength of a material. In residual stress 

modeling with several parameters, it is sometimes difficult to solve for the optimal 

value through analytical or numerical calculations. Here, GA is an efficient 

algorithm which can generate the optimal values, both minima and maxima.                 

The purposes of this research are to obtain the optimization of variable in residual 

stress models using GA and to predict the center of residual stress distribution, 

using fuzzy neural network (FNN) while the artificial neural network (ANN) used 

for modeling. In this work a single-material 316/316L stainless steel bar is 

modeled. The minimal residual stresses of the material at high temperatures were 

obtained with GA and analytical calculations. At a temperature of 6500C, the GA 

optimal residual stress estimation converged at –711.3689 MPa at a distance of 

0.002934 mm from center point, whereas the analytical calculation result at that 

temperature and position is -975.556 MPa . At a temperature of 8500C, the GA 

result was -969.868 MPa at 0.002757 mm from the center point, while with 

analytical result was -1061.13 MPa. The difference in residual stress between GA 

and analytical results at a temperature of 650oC is about 27%, while at 850oC it is 

8.67%. The distribution of residual stress showed a grouping concentrated around 

a coordinate of (-76; 76) MPa. The residuals stress model is a degree-two 

polynomial with coefficients of 50.33, -76.54, and -55.2, respectively, with a 

standard deviation of 7.874. 
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INTRODUCTION 
 

In general, materials used in nuclear power 

plants are affected by thermal treatment. It is 

necessary to know the strength of the materials 

through residual stress. Some of the required 

information are the optimal value residual stress 

base on center of thermal treatment, the center of 
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residual stress distribution, and the model prediction 

of residual stress distribution. 

Basically, the welding residuals stress can be 

predicted using neural network and fuzzy logic 

modeling [1]. The residual stress was evaluated in 

steel plates [2]. The laser welding process parameter 

for super austenitic stainless steel can be optimized 

using artificial neural networks and genetic 

algorithm [3]. Beside that, the effect of welding 

sequence on residual stress distribution in multipass 

welded piping branch junction was analyzed [4]. 
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The simulation with finite element for residual stress 

induced done to dissimilar welding of  P92 steel 

pipe with weld metal IN625 [5]. After then the 

residual stress on failure pressure of cylindrical 

pressure vessels was analysed [6]. The neuro-

evolutionary models are used for prediction of weld 

residual stress [7]. The residual stress distributions 

in welded stainless steel sections have been 

investigated [8]. As well as, the welding process 

simulation model for temperature and residual stress 

was analysed [9]. FEM are use to predict residual 

stresses in girth welding  joint of layered cylindrical 

vessels [10]. The residual stress can used for fitness 

assessment of pipe girth welds [11]. The arc  

welding process for reduced distortion in welded                

structure was simulation-based numerical 

optimization [12]. Finally, microstructure and 

mechanical characteristics of a laser welded joint in 

SA508 nuclear pressure vessel steel was compared 

with produced arc-welding [13]. 

Here, this work is concerning the optimization 

of variables of residual stresses in model for bars of 

a single material of 316/316L stainless steel (SS) 

under high-temperature treatment. The optimization 

was performed using genetic algorithms (GA).              

The 316/316L steel is chosen as it is more corrosion-

resistant than the  more commonly used 304/304L 

SS. This optimization was performed through the 

fitness of residual stress function of single bars. 

Then the residual stress from analytic calculation 

will be developed to be the model with artificial 

neural network (ANN). Afterward, the center of 

residual stress will be developed with fuzzy neural 

network (FNN). This value can be used to determine 

the residual stress center of distribution. 

 

 

 
EXPERIMENTAL METHODS 
 

Genetic algorithm 
 

Genetic algorithm (GA) is an algorithm which 

is widely applied to some optimization problem-

solving, both for maximization and minimization 

problems [3]. Genetic algorithms are starting to be 

used to model and solve complex physical problems, 

for which analytical solutions are prohibitively 

difficult to obtain. This algorithm follows the 

sciences of genetics and natural selection process. 

Genetic algorithm can also be used for problem 

solving and relating to a variable or parameter 

whose value lies within a certain range.  In addition, 

genetic algorithm can be used for problems which 

have certain restrictions or constraints. This 

algorithm is usable for finding the solution of 

general mathematical equation systems, including 

systems which are impossible, or difficult, to solve 

analytically [3]. 

In genetic algorithm, the members of the 

population of the settlement are called individual 

samples. In completing the optimization, the 

algorithm continually searches for a better solution. 

In every solution, every prospective individual 

chromosome has properties that can mutate and 

change. In the simplest solution, the initial solution 

is repress ented by binary numbers such as 0 and 1 

or by real numbers. The evolution starts from a 

population consisting of a generation of individuals 

represented by random numbers. The process is 

repeated. The repetitions are expressed as the next-

generation iterations. In every generation, the 

suitability of each individual in the population is 

evaluated by a fitness function. The value of the 

fitness function usually refers to the value of the 

objective function in optimization problem solving.  

The individuals are fitter in the selected 

population stochastic and each individual is 

modified in a way which includes crossing                

back recombination (crossover) and displacement 

(mutation) at random to form a new generation.           

The new generation of the chosen solution is then 

used in the next iteration. The repetition of this 

procedure is expressed in a set of binary numbers or 

binary digits in the range of (binary digit/bit) as well 

as in the ranks of real numbers (the real).                   

The algorithm ends when the maximum number              

of generations has been produced, or the best 

approximation level has been reached [3]. 

There are two types of operators in genetic 

algorithm, namely the operators to perform 

recombination, known as recombination or 

crossover operators, and mutation operators. 

Recombination operators are subdivided into binary-

valued recombination, real-valued recombination, 

and permutations, whereas mutation operators are 

subdivided into real-valued mutation and binary-

valued mutation. In this work, binary-valued 

recombination and mutation are selected.                         

The following example shows an initialization 

procedure for member's generation population in 

binary digits before recombination:  
 

First chromosome:    1000 | 0100 | 0010  

Second chromosome :     1110 | 0000 | 1000 

After multipoint crossover or recombination, the 

children chromosomes become:  
 

First chromosome:    1000 | 1000 | 0000  

Second chromosome:    1110 | 0010 | 0100  
 

A mutation, in genetic algorithm, changes the binary 

digit (bit) value at a given position. The binary value 
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1 will be replaced with the binary value 0 and vice-

versa. If, for instance, the binary digit in position-9 

is 0, after it experiences mutation the binary digit in 

position-9 becomes 1. Here is an example of a 

selected chromosome before mutation, 

First chromosome:         1110 | 0010 | 0100 

and after  mutation,  

First chromosome becomes    1110 | 0010 | 1100  

The parameters to be determined in the 

genetic algorithm include the size of the population 

declared (pop size), the probability of recombination 

or crossover (pc), and the probability of mutation 

(pm). The use of constant values for pc and pm 

depends on the size completion of the fitness value. 

The population size (popsize) must be at least 30. 

The method of selection is a stochastic sampling 

with replacement. In this method the replacement 

individuals are probabilistically selected based on 

their fitness values, starting with the individuals 

with the largest fitness values; the larger the 

individual’s fitness value, the larger its assigned 

probability of being selected to reproduce. 

A flowchart of the process of genetic 

algorithm is shown in Fig. 1.  

 

Generation of Random Numbers for

Population initialization

Evaluation

Population

Selection

Cross Over and Mutation

Satisfied testing 

criteria

Evaluation

Goodness of Fitness

Finish

No

Yes

 
 

Fig. 1: Flow Diagram of Genetic Algorithms Process. 

 

 

Artificial neural networks 
 

The artificial neural network (ANN) is a 

method to allow an object or a system to be trained, 

such that it will give correct outputs in response to 

inputs which resemble the input patterns used in 

training it. The perceptron method is a method for a 

neural network to learn through observations so that, 

by using its internal parameters, the network could 

classify its inputs into recognized categories or 

classes. A neural network consists of a number              

of associative neurons and a number of inputs.                

In designing neural network, specifications have to 

be given to allow the network to identify its inputs 

and outputs. For use in pattern recognition 

applications, the perceptron has to be first prepared, 

or trained. It has to be coded with a classification 

matrix containing binary strings representing the 

classes of inputs. Structurally, the perceptron 

consists of two stages, or layers, as shown in                

Fig. 2(a). The first layer of the perceptron assigns 

weights to the inputs, or in more commonly used 

terminology, it is a sign detector; it determines the 

special sign of the input. The second layer of the 

perceptron is the output layer. It classifies the given 

data pattern based on the special sign. The learning 

process makes relevant relationship between weight 

(bi) and threshold value ( ). For the problem of 

classifying to just two classes, the output layer has 

only one node. Layer 1 continually evaluates 

weighting functions which take the inputs which are 

not necessarily binary numbers, and produce outputs 

in the form of a pattern of binary values xi of the {0, 

1} domain or bipolar values xi of the {-1, 1} domain. 

The set of output is element of linear threshold with 

threshold value following (1), 

 





n

i

ii bpbfa
0

0 )( , 0b   (1) 

 

where bi represents weights which can be modified 

due to arrival of signal pi, and bo = -( ) is an 

approximation to initial values of the weights. 

Equation (1) indicates that the threshold describe 

weights as relating the set of output and the arrival 

signal of shadow x0 (Fig. 2). The function f(.) is the 

perceptrons’ activation function; here, specifically, it 

is a tan-sigmoid transfer function following (2), 

 
 step(x)   =  1  if x > 0    (2) 

   = -1  if other 

 
The learning procedure takes the weights 

correlating to the set of output (in the last layer).            

If the previous weight changes in the last layer only, 

the use of only one hidden layer in the perceptron in 

Fig. 2 is justified. The following single-layer 

perceptron learning algorithm is repeated until 

convergence is reached. As the first step, select an 

input vector x from training data. In the second step, 

if the perceptron gives the wrong answer, modify all 

weights bi according to
iii pab  , where ia is the 

target of the output and  is the level of learning. 
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Learning rules can be followed when changing 

threshold value   (= -bo) according to equation (1). 

For example, the architecture of a neural network 

consisting of neuron s, input r, and tan-sigmoid 

transfer function can be expressed in Fig. 2(a)               

and (b) [1,3]; 

 

 
          (a) 

 

Fig. 2(a). Architecture of ANN [1]. 

 

 

 
        (b) 

 

Fig. 2(b).  Tan-Sigmoid Transfer function [1]. 

 

 

Fuzzy neural network 
 

The fuzzy neural network (FNN) is described 

in (3), 

      ).......exp( 332211 kk EEEEF        (3) 

Where k ,....,,, 321  are the weighting 

coefficients and 
kEEE ,........,, 21
 have a concept                

of energy [7,14,15]. The center value parameters are 

defined in (4), 
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Residual stress 
 

A simple model [Tim A. Osswald, 1998] for 

the calculation of residual stress in a bar of a single 

material is given in (5) [16], 
 

     )
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z
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The residual stress distribution follows a quadratic 

temperature distribution. We assume no additional 

residual stresses during the phase change.                    

This function can be used to estimate the 

distribution of residual stress in thin samples. In this 

case, the parameter Tf  is the final temperature of the 

part, E is Young's modulus,  is the coefficient of 

thermal expansion, L is half the thickness, and Ts is 

the solidification temperature. The unit of residual 

stress )(z  is MPa and the unit of z is mm.                   

The parameter z  is the distance from the center 

point where the heating process takes place. 

 
 
 
RESULTS AND DISCUSSION 
 

In the residual stress equation (5), there are 

several parameters whose values can be expressed as 

constants or as values in fixed ranges (thus, 

restricted to certain intervals). We use the 316/316L 

SS which is more corrosion-resistant than the              

more commonly used 304/304L SS. The initial 

temperature in the solid state Ts is 20
o
C (room 

temperature) and the final temperature Tf  ranges 

between 650
o
C and 1000

o
C. However, in simulation, 

Tf is treated as a constant; its value is changed only 

at the beginning of a simulation run. Likewise, the 

parameter L shows the average thickness and is 

between 0.25 mm and 6.35 mm, but is treated as a 

simulation constant. The constant E indicates the 

Young's modulus of 200×10
3
 MPa.The coefficient 

of thermal expansion is expressed with a value of 

1.94×10
-5

 at the temperature range of 20
o
C-1000

o
C 

and 1.82×10
-5

 at the temperature range of 20
o
C -

500
o
C. The values of z , which is the center point of 

high temperature treatment, are given in the range of 

(-5; 5) mm rather than as a constant. 

Based on the assumption that the temperature 

distribution is parabolic [16], the parabolic models 

can be used to illustrate how the residual stress 

behaves during high temperature processes. It starts 

from temperatures Tf1 and Tf2 of 100
o
C and 500

o
C, 

respectively, as shown in Fig. 3. The optimization of 

the genetic algorithm with multiple parameters was 

performed using the existing facilities and functions 

in MATLAB. 
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Fig. 3. Residual stress curve during temperature process Tf1 at  

1000C  and Tf2 at 500oC. 

 

Optimization was performed on the residual stress 

equation which in this case is expressed as a 

function of genetic algorithm. For the control 

parameters in the genetic algorithm, the population 

size (pop size) was set constant at the previously 

stated minimum of 30, while the probability of 

crossover (pc) and the probability of mutation                

(pm) were set at 0.25 and 0.01, respectively.                  

The simulations achieved the objective function of 

minimal residual stress with the distance z.                     

The residual stresses in the simulation iterations 

performed to reach the 50
th
 generation, with each 

generation have population size of 30. The optimal 

value of residual stress was obtained when the 

fitness of objective function is reached. 

The minimal value of the residual stress of the 

316/316L SS at a temperature of 650
o
C converged 

to or was best at -711.3689 MPa (-711.4 MPa), 

which is given in Fig. 4 and Table 1. Its position z  

is obtained as 0.002934 mm from the center point 

for the residual stress of -711.4 MPa. 
 

Table 1.  Optimal Residual Stress at 650oC 
 

Number of 

Generation 

Size  of 

Pop. 

Best 

Fitness 

1 30 2482 

2 60 2482 

3 90 2482 

4 120 2482 

5 150 2482 

6 180 2482 

7 210 2482 

8 240 -967.9 

9 270 -967.9 

10 300 -967.9 

: :  

45 1350 -969.9 

46 1380 -969.9 

47 1410 -969.9 

48 1440 -969.9 

49 1470 -969.9 

50 1500 -969.9 

 
 

Fig. 4. Optimal residual stress of 316/316L SS at 650oC. 

 

From Table 1, in the last six simulations (from 

generation-45 to generation-50) the residual stress 

was stable or convergent at -711.4 MPa. This value 

is also shown in Fig. 4. 

At the temperature of 850
o
C, the optimal 

residual stress values converged to -969.868 MPa, 

which is given in Fig. 5 and Table 2. The position z  

is 0.002757 mm from the center point for the 

optimal residual stress on-969.868 MPa. In Table 2, 

the residual stress remains constant from generation-

45 until generation-50. The value of residual stress 

is stable at -969.9 MPa as shown in Fig. 5. 

 

 

 

Fig. 5. Optimal residual stress for 316/316L SS at 850oC. 
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Table 2. Optimal Residual Stress at 850oC 
 

Number of 

Generation 

Size  of 

Pop. 

Best 

Fitness (MPa) 

1 30 -688.1 

2 60 -688.1 

3 90 -688.1 

4 120 -688.1 

5 150 -688.1 

6 180 -708.8 

7 210 -708.8 

8 240 -708.8 

9 270           -708.8 

10 300           -708.8 

: :  

45 1350 -711.4 

46 1380 -711.4 

47 1410 -711.4 

48 1440 -711.4 

49 1470 -711.4 

50 1500 -711.4 

 

The residual stress function during high temperature 

processes  Tf3 at 650
o
C and Tf4 at 850

o
C is shown    

in Fig. 6. 
 

 

 
Fig. 6. Residual stress Tf3 at 6500C and Tf4 at 850oC. 

 

The optimal residual stresses with GA in high 

temperature process at 650
o
C and 850

o
C are given                   

in Table 3. 

 
Table 3.  Optimal Residual Stress in high temperature process 

with genetic algorithm 
 

     Temperature 

           ( oC ) 

    Residual Stress 

   )(z  (MPa) 

      Distance 

      z  (mm) 

650oC -711.3689 0.002934 

850oC -969.868 0.002757 

 

The analytical calculation results for residual stress, 

based on (4), at the positions obtained from the 

simulation fis given in Table 4. 

Table 4. Residual Stress obtained from analytical calculation 
 

       Temperature 

             ( oC ) 

     Residual Stress 

      )(z (MPa) 

    Distance 

    z  (mm) 

650oC -975.556 0.002934 

850oC -1061.134 0.002757 

 

The residual residual stress value with                   

GA approach at 650
o
C is -711.3689 MPa and                     

with analytical calculation is -975.556 MPa.                    

There is a difference of about 27 %. The difference 

may be caused by various factors. Thus, a better                   

fit may also be obtained by several alternative 

approaches. For instance, the number of               

simulation rounds in GA may be increased.                   

Other alternatives involve selecting different               

values of parameters in GA such as the parameters 

of the size of population, probability of 

recombination or crossover (pc), and probability                

of mutation (pm). It must be noted that                          

for a particular population size, there is a                   

particular range of pc and pm values which                    

will result in optimum fitness value for all 

generations and/or fast simulation times. Generally 

GA is more efficient than analytical calculations, 

because with a reasonable number of simulations it 

can achieve the optimal value of fitness function in 

certain range. At the temperature of 850
o
C                     

the residual stress value obtained with GA                        

is -969.868 MPa and with analytical calculation                   

is -1061.134 MPa. This difference is only           

about 8.67%.  

Table 5 presents the residual stress estimated 

from analytical calculations with (4) for several 

distances z from the center point. Those are to be 

used for modeling using FNN. 

 
Table 5. The residual stress based on analytic calculation 
 

z (mm) )(z  

-0.569 -975 

-1.106 -711 

-2.111 -244 

-2.030 -145 

-1.900 -6.59 

-1.911 6 

-2.030 146 

-2.051 171 

-2.116 250 

-2.225 389 

-2.455 710 

-2.625 965 
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The result of the grouping or clustering for the 

distribution of the residual stress using FNN 

concentration in two-dimension is shown in Fig. 7. 

The center for residual stress distribution based on 

(2) and (3) is found as (-76, 76) MPa. 

 

 
 

Fig. 7. The center of residual stress distribution. 

 

By using ANN simulation modeling based on 

(1), the trend of residual stress was obtained for 

training data. The plot of the data for the trend of the 

residual stress prediction using ANN is shown in 

Table 6 and Fig. 8. 

 
Table 6. The residual stresses found from simulation 
 

z (mm) )(z  

-2 330 

-1.5 250 

-1 50 

0 -85 

0.5 -90 

1.5 -75 

1 -40 

3 250 

4 390 

  

 

 
Fig. 8. Residual stress trend determined using ANN. 

Figure 9 shows the adjusted residual coefficient (R) 

of the estimation process simulation modeling in 

ANN. The adjusted residual coefficient of modeling 

results is expressed in the parameter R = 0.94397. 

Since R is close to one, it indicates that the results of 

the estimation are in accordance with the expected 

modeling. It can be suggested that the model 

estimated approximates the expected model. 

 

 
Fig. 9. The results of the estimation process by ANN                          

(R = 0.94397). 

 

The residual stress model is a polynomial degree 

two with coefficients p1, p2 and p3 whose values              

and ranges are 50.33 (33.77; 67.28); -76.54                

(-121; -32.03) and -55.2 (-133; 22.66), respectively, 

with an error deviation of 7.874. 

 

 

 

CONCLUSION 
 

The optimal parameter values of the                

GA-based residual stress model for high temperature 

materials processing were obtained. The minimal 

residual stress simulations with GA at a final 

temperature of 650
o
C converged to the value of                

-711.3689 MPa at 0.002934 mm from the center 

point while with analytical calculations resulted              

in -975.556 MPa. At 850
o
C, GA simulation results 

converged to -969.868 MPa while analytical 

calculations give -1061.13 MPa at 0.002757 mm 

from the center point. The difference between GA 

and analytical results for residual stress at the same 

distance from center point is about 27% at the 

temperature 650
o
C and about 8.67% at the 

temperature of 850
o
C. The difference may be 

reduced by increasing the number of simulations                     

in GA or by changing the parameters in GA.                 

GA is more efficient than analytical calculations, 

because with a reasonable number of simulation                

it can achieve the optimal value fitness function               
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for some parameters within a certain range.                     

The measures of central tendency for clustering                    

data using the FNN have coordinates (-76; 76)              

MPa. While the model with ANN has                             

the polynomial degree two with adjusted coefficient 

is 0.94397. This value close to one, that means                   

the results of model are quite good. The coefficients 

of trend residual stress p1, p2 and p3 respectively               

are 50.33 (33.77; 67.28); -76.54 (-121; -32.03)                 

and -55.2 (-133; 22.66) with an error deviation                     

of 7.874. 
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