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In this study, spinel LiMn2O4 powder was synthesized from LiOH.H2O and MnOx 

by conventional and mechanical alloying (MA) methods, followed by heat treatment 

at 800 °C in O2 for four hours with cooling to room temperature in the furnace at            

60 °C/h. It is found that both samples do not show phase transition in low 

temperature, and this occurred for different reasons. In the MA sample, the presence 

of Fe as contamination increased the Mn valence and hindered the occurrence of 

phase transition. The conventional sample does not show phase transition at low 

temperature due to stoichiometric content, without any contamination. In general, 

the absence of phase transition occurred due to synthesis condition employed in       

this study. 

 

© 2017 Atom Indonesia. All rights reserved 

 
 

INTRODUCTION 
 

Spinel LiMn2O4 has attracted attention, both 

in terms of its structure and its application, in an 

effort to find a suitable material for the cathode               

in an Li-ion battery system. On the other hand,                 

it is accepted in general that the physical                        

and electrochemical properties of LiMn2O4 are 

determined by such factors as particle size, lattice 

parameter, stoichiometry, average Mn valence, 

surface morphology, and homogeneity [1-5].                    

In practice, these factors are closely related to the 

synthesis method and condition, such as starting 

material, content of lithium, heating temperature, 

holding time, and cooling rate [6-12]. 
It is important to ensure that LiMn2O4 

contains a sufficient amount of Mn4+ and a low 
content of Mn3+ in order to maintain average                 
Mn valence above 3.5+. Lower average Mn valences 
will cause Jahn-Teller distortion during 
electrochemical processes and lead to capacity 
fading of spinel LiMn2O4 [13]. The spinel LiMn2O4 
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has an average Mn valence of 3.5+, which is just a 
critical point, and will easily be interfered even by a 
slight change in synthesis condition, due to charge 
compensation. Previous works suggested some 
factors responsible for a phase transition in spinel 
LiMn2O4, such as partial charge ordering of Mn3+ 
and Mn4+ [12] and Jahn-Teller distortion [14].             
A report showed that the absence of Jahn-Teller 
ordering is related to stoichiometric spinel               
without phase transition at low temperature [15]. 
Another result showed that the phase transition                
is closely related to the population of oxygen 
vacancies and its presence is the sole and necessary 
condition for the phase transition, not the synthesis 
temperature or the thermal treatment history [16]. 

It was proposed that in a strictly 
stoichiometric sample, this phase transition should 
not occur. In order to obtain a strictly stoichiometric 
LiMn2O4, a synthesis method should be selected 
carefully while the synthesis condition should be 
controlled simultaneously. Mechanical alloying 
(MA) and conventional mixing method in a mortar 
are common among many methods used to 
synthesize LiMn2O4, and previous works showed 
various results of LiMn2O4 synthesis. In this paper, 
the use of both methods is reported and the 
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relationship among the synthesis condition, the 
physical properties, and the stoichiometry of the 
spinel LiMn2O4 are described. In particular, the 
stoichiometry of the synthesized LiMn2O4 and the 
structure were determined in relation to the 
occurrence of phase transition. Characterizations 
were carried out by several methods, namely                    
by scanning electron microscope (SEM), 
thermogravimetry-differential thermal analysis  
(TG-DTA), and X-ray diffraction (XRD). In order 
to accurately determine the site occupancies of light 
atoms such as lithium, or even oxygen, in the 
presence of manganese, and also to clarify structural 
details of spinel LiMn2O4, neutron powder 
diffraction (NPD) was employed [13]. NPD is a 
powerful and suitable means for structural 
determination because of the difference in the 
coherent scattering lengths of atoms in LiMn2O4. 

 
 
EXPERIMENTAL METHODS 

 
Synthesis of spinel-LiMn2O4 

Spinel LiMn2O4 was synthesized from 

starting materials of LiOH·H2O as lithium sources 

and MnOx obtained by thermal decomposition of 

manganese oxalate. Stoichiometric amounts of 

LiOH·H2O and MnOx were charged into a stainless 

steel jar with an internal volume of 125 mL in molar 

ratio of Li/Mn=0.50. Mechanical alloying (MA) was 

carried out using a planetary ball mill (Retsch PM 

200) and stainless steel balls (10 mm diameter) with 

various parameters. The weight ratio of balls and 

materials was 40:1. The rotation speed of the miller 

was 500 rpm. Spinel LiMn2O4 was also synthesized 

by conventional mixing of starting materials in a 

mortar for comparison. The mixtures were then 

pressed into pellets and heated at 800 °C in O2 for 

four hours with cooling to room temperature in the 

furnace at 60 °C/h. 

 
 
Characterization of spinel-LiMn2O4 

The morphology of the spinel was analyzed 
using the JEOL JSM-6510LA SEM at PSTBM-
BATAN, Indonesia. Thermal analysis was 
conducted with a Setaram TAG-24S DTA/TG                 
at Ibaraki University, Japan, using alumina crucible, 
in argon. The rate of heating was 10 °C/min.               
The structure of the as-prepared powders was 
studied by X-ray diffraction (Rigaku Ultima                   
IV XRD) at Rigaku, Japan, using Cu K radiation           
at the temperature range of 20 °C to -180 °C.                   
The lattice parameter of prepared spinel phases was 
analyzed by built-in software package PDXL with 
Si as reference. Neutron diffraction data were 

measured at the neutron HRPD of HANARO-
KAERI, South Korea ( = 1.83433 Å) at 15 K,              
150 K, and 300 K, while neutron diffraction data of 
standard LiMn2O4 measured at 300 K were obtained 
from HRPD of BATAN, Indonesia ( = 1.82230 Å). 
The structural parameters were refined with                 
FullProf for the data from HANARO-KAERI                 
and by Z-Rietveld [17,18] for the data from                           
HRPD-BATAN. 

 

 
RESULTS AND DISCUSSION 
 

Figures 1(a) and 1(b) show the morphology of 
spinel samples synthesized from LiOH.H2O and 
MnOx obtained by MA for six hours and 
conventional method, then annealed at 800 °C for 
four hours in O2 and cooled down to room 
temperature with cooling rate 60 °C/h. The two 
samples seem to show similar morphologies with 
distinctive individual granules whose size is about 
several hundreds nanometers and some aggregation. 
In general, the annealing process with the same 
conditions for both samples caused the particles 
growth and aggregation of smaller particles 
regardless of the initial mixing methods. 

 

 
(a) 

 

 
(b) 

 

Fig. 1. SEM micrograph of the spinel-type LiMn2O4 

synthesized with an initial molar ratio of Li/Mn = 0.50 (a) after 

MA for 6 hours and (b) conventionally prepared, and after 

annealed at 800 oC for 4 hours in O2 then cooled with cooling 

rate of 60 oC/h. 

 

Figure 2 shows TG profiles and DTA curves 

of Li-Mn-O mixtures synthesized by MA for six 

hours and by conventional method, then annealed        

at 800 °C for four hours in O2 and cooled down          
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to room temperature with cooling rate 60 °C/h.         

The DTA curves of both samples show similar 

patterns. The related TG profile of both samples 

shows that the mass changed gradually until around 

700 °C and then declined sharply until 900 °C.               

The common value of mass loss in MA sample is 

lower than in the conventional sample at all 

temperatures. Therefore, it serves as evidence that 

the MA sample has a better thermal stability than 

conventional sample because the mixing of raw 

materials during MA was more controlled 

throughout the process, which leads to a consistent 

contact and reaction between raw materials powder. 

Above 800 °C, both samples show mass losses              

and are related to the decomposition process                        

of LiMn2O4. 

 

 
 

Fig. 2. TG-profiles and DTA-curves of the mixture                              

of LiOH.H2O and MnOx with an initial molar ratio of                    

Li/Mn = 0.50 synthesized by MA for 6 hours and conventional 

method and subsequent annealing at 800 oC for 4 hours in O2 

with cooling rate of 60 oC/h.  

 
Figure 3 shows the XRD patterns of the 

spinel LiMn2O4 synthesized from LiOH.H2O and 

MnOx by conventional and MA methods, measured 

at temperature range from room temperature down 

to 93K. Previous works [19,20] showed that at room 

temperature, stoichiometric spinel oxide, LiMn2O4, 

display a cubic, normal spinel structure (space group 

Fd-3m). The transformation should start at near 

room temperature (~290 K) and is shown by peak 

splitting of the spinel diffraction lines with 

decreasing temperature. The diffraction patterns 

from the samples synthesized from LiOH.H2O and 

MnOx by conventional and MA methods in this 

study, however, did not show any significant 

changes such as peak splitting down to 93 K, as 

shown in Figs. 3(b) and (d). 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 3. XRD patterns of the spinel-type LiMn2O4 synthesized 

with an initial molar ratio of Li/Mn = 0.50 by conventional 

method (a) and (b) and MA method for 6 hours (c) and (d) and 

annealed at 800 oC for 4 hours in O2 then cooled with cooling 

rate of 60 oC/h. (a) and (c) 2 region from 34.5 o to 49 o and                 

(b) and (d) peaks of (400) plane. 

 
In Fig. 4(a), however, it is revealed that lattice 

constant a increased with temperature. Peak 
broadenings, shown as FWHM in Fig. 4(b), are 
observed for all reflections and getting larger as 
measurement temperature decreased. It is notable 
that peak broadening was larger and lattice constant 
a was smaller for conventional mixing sample 
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compared with MA sample. The result indicates that 
phase transition at low temperatures was not 
obvious for these samples. 
 

 
 

 
 

Fig. 4. (a) lattice constant a of the cubic LiMn2O4 and (b) 

Gaussian FWHM, plotted as a function of measuring 

temperature. The data were obtained by XRD measurements. 

 

 

 

 
 

Fig. 5. Neutron diffraction patterns taken from HRPD-

HANARO of the spinel-type LiMn2O4 synthesized with an 

initial molar ratio of Li/Mn = 0.50 by conventional method and 

annealed at 800 oC for 4 hours in O2 then cooled with cooling 

rate of 60 oC/h. (a) whole pattern and (b) (400) peaks. 

 
 

 
 

Fig. 6. Neutron diffraction patterns taken from HRPD-

HANARO of the spinel-type LiMn2O4 synthesized with an 

initial molar ratio of Li/Mn = 0.50 by MA method and annealed 

at 800 oC for 4 hours in O2 then cooled with cooling rate of        

60 oC/h. (a) whole pattern and (b) (400) peaks. 

 
Figures 5 and 6 show the neutron diffraction 

obtained with HRPD-HANARO of the spinel 
LiMn2O4 synthesized by MA and conventional 
methods, respectively, after measurements                   
at temperatures of 300 K, 150 K, and                          
15 K. The patterns do not show any peak           
splitting, which is consistent with the                      
result from XRD. Figures 7(a) and 7(b)                  
show  the  profile  fitting of neutron diffraction data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
Fig. 7. Rietveld refinement patterns for neutron diffraction 

measurement at 15K, 150K and 300K (HRPD-HANARO) of 

spinel LiMn2O4 synthesized by a) conventional and b) MA 

methods and annealed at 800 oC in O2. (c) commercial/standard 

LiMn2O4 measured at 300K (HRPD-BATAN).
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Table 1. Refined structure parameters of spinel-LiMn2O4. 

 

 
Temperature of measurement/K 

15 150 300 

Synthesis Method MA Conv. MA Conv. MA Conv. 

Lattice 

   Parameter/Å 
a 8.22337(72) 8.21622(71) 8.22650(63) 8.22000(83) 8.23488(69) 8.22880(70) 

Atomic 

   Coordinates 

Li(1) g 0.97271 1 0.97271 1 0.97271 1 

 x 1/8 1/8 1/8 1/8 1/8 1/8 

 B/Å2 0 0 0 0 0 0 

Mn(1) g 0.96269 1 0.96269 1 0.96269 1 

 x 1/2 1/2 1/2 1/2 1/2 1/2 

 B/Å2 0 0 0 0 0 0 

O(1) g 1 1 1 1 1 1 

 x 0.26320(7) 0.26307(7) 0.26271(6) 0.26281(8) 0.26307(7) 0.26296(7) 

 B/Å2 0 0 0 0 0 0 

Fe g 0.01392 - 0.01392 - 0.01392 - 

 x 1/2 - 1/2 - 1/2 - 

 B/Å2 0 - 0 - 0 - 

Cr g 0.00243 - 0.00243 - 0.00243 - 

 x 1/2 - 1/2 - 1/2 - 

 B/Å2 0 - 0 - 0 - 

R-Factors S 1.68 1.51 1.48 1.19 1.15 1.09 

 Rwp/ % 14.6 14.3 12.5 16.0 14.1 14.7 

 Re/ % 8.67 9.44 12.7 13.4 12.2 13.5 

 

Note: 

Li(1) is located at 8a site with coordinates (1/8, 1/8, 1/8); Mn(1) is located at 16d site with coordinates (1/2, 1/2, 1/2); 

O(1) is located at 32e site with coordinates (x, x, x). 

Space group: Fd-3m (No. 227, origin choice 2). 

 
Table 2. Anisotropic temperature factors (Å2) of spinel-LiMn2O4. 

 

 
Temperature of measurement/K 

15 150 300 

Synthesis Method MA Conv. MA Conv. MA Conv. 

Li(1) B11 0.0113(7) 0.0135(7) 0.0123(6) 0.0145(9) 0.0135(7) 0.0132(7) 

 B22 = B11(Li1) = B11(Li1) = B11(Li1) = B11(Li1) = B11(Li1) = B11(Li1) 

 B33 = B11(Li1) = B11(Li1) = B11(Li1) = B11(Li1) = B11(Li1) = B11(Li1) 

 B12 0 0 0 0 0 0 

 B13 0 0 0 0 0 0 

 B23 0 0 0 0 0 0 

Mn(1) B11 0.0074(2) 0.0081(2) 0.0075(1) 0.0085(2) 0.0087(2) 0.0091(2) 

 B22 = B11(Mn1) = B11(Mn1) = B11(Mn1) = B11(Mn1) = B11(Mn1) = B11(Mn1) 

 B33 = B11(Mn1) = B11(Mn1) = B11(Mn1) = B11(Mn1) = B11(Mn1) = B11(Mn1) 

 B12 -0.0003(2) -0.0003(2) -0.0002(2) 0.0000(2) -0.0006(2) 0.0006(2) 

 B13 = B12(Mn1) = B12(Mn1) = B12(Mn1) = B12(Mn1) = B12(Mn1) = B12(Mn1) 

 B23 = B12(Mn1) = B12(Mn1) = B12(Mn1) = B12(Mn1) = B12(Mn1) = B12(Mn1) 

O(1) B11 0.0087(1) 0.0088(1) 0.0092(1) 0.0094(1) 0.0101(1) 0.0095(1) 

 B22 = B11(O1) = B11(O1) = B11(O1) = B11(O1) = B11(O1) = B11(O1) 

 B33 = B11(O1) = B11(O1) = B11(O1) = B11(O1) = B11(O1) = B11(O1) 

 B12 -

0.00003(11) 

-0.00002(12) -0.0001(1) -0.0001(1) -0.0004(1) -0.0002(1) 

 B13 = B12(O1) = B11(O1) = B12(O1) = B11(O1) = B12(O1) = B11(O1) 

 B23 = B12(O1) = B11(O1) = B12(O1) = B11(O1) = B12(O1) = B11(O1) 
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The refinement fitted the adapted cubic Fd-3m 
symmetry. A comparison was made between the 
synthesized and standard LiMn2O4, as shown in  
Fig. 7(c) of neutron diffraction pattern taken from 
HRPD-BATAN. The two samples show similar 
patterns without any peak splitting. The synthesized 
LiMn2O4 had lattice constant a of 8.23488(69) Å 
(for MA) and 8.22880(70) Å (for conventional) at 
300 K, comparable to 8.23668(19) Å of standard 
LiMn2O4. This result leads to a conclusion that 
synthesized samples were stoichiometric. 

There was a decrease in lattice constant                
a with decreasing measurement temperature                      
as summarized in Tables 1 and 2 and depicted in         
Fig. 8. As can be seen in this figure, the Li–O          
and Mn–O distances decreased with decreasing 
measurement temperature. During the refinement of 
conventional samples, the occupancies of oxygen at 
all measurement temperatures were found to be 
greater than one, indicating no observable oxygen 
deficiency  and   all  samples   being  stoichiometric. 

 

 
Fig. 8. Bond distances (Li–O, Mn–O) of the spinel-type 

LiMn2O4 as a function of measurement temperature. 

 
The refinement for MA samples by using stainless 
steel jar and balls also considered the Fe and Cr 
contents from chemical analysis by ICP-AAS [16]. 
The result shows fully occupied oxygen as well.  
The absence of a phase transition in both samples 
occurred due for different reasons. The samples 
synthesized by using stainless steel jar and balls 
contained Fe, resulting in occupancy of Fe at Mn 
site (16d), and eventually increasing Mn oxidation 
state and hindering the occurrence of a phase 
transition. The result from data refinement shows 
that the oxygen sites were fully occupied. It was 

therefore concluded that the absence of a phase 
transition is closely related to the synthesis 
condition employed in this study such as: the 
moderate synthesis temperature (800 °C), the use of 
O2 atmosphere to induce more oxidative reaction, 
the slow cooling rate (60 °C/h), and the use of more 
reactive starting materials (LiOH.H2O and MnOx). 

 

 

CONCLUSION 
 

Spinel LiMn2O4 powder has been synthesized 
by MA and conventional method. It was found that 
in the MA sample produced by using stainless steel 
jar and balls, the presence of Fe as contamination, 
situated at Mn site (16d), increased the Mn valence 
and hindered the occurrence of a phase transition. 
The conventional samples synthesized from reactive 
starting material, i.e. LiOH.H2O and MnOx, and 
annealed at 800 °C in O2 with slow cooling rate did 
not show a phase transition at low temperature. 

The phase transition in spinel LiMn2O4 at low 
temperature as an indication of non-stoichiometric 
LiMn2O4 did not occur in studies by means of XRD 
and neutron powder diffraction (NPD). Generally, 
the absence of a phase transition was due to 
synthesis conditions employed in this study such as: 
the moderate synthesis temperature (800 °C), the 
use of O2 atmosphere to induce more oxidative 
reaction, the slow cooling rate (60 °C/h), and the use 
of more reactive starting materials (LiOH.H2O and 
MnOx). It is concluded that stoichiometric spinel 
without any contamination was successfully 
obtained by conventional method. 
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