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This paper proposes a novel technique of adaptive switching alternative median 

(ASAM) filter for high-density white spot noise removal. The ASAM filter is 

composed of two blocks filtering, namely main and secondary block filtering, 

respectively. The proposed secondary block filtering is a new technique in high-

density impulse noise removal and the main contribution of this research. The 

ASAM algorithm was tested on the standard 8-bit gray-scale, 512×512 pixel Lena 

image and a real neutron radiographic image. The results showed significant 

reduction of white spot noise in both types of images through visual inspection.    

To measure the performance of noise removal in simulation test we measured the 

peak signal-to-noise ratio (PSNR), structural similarity (SSIM) index, and denoising 

time, and in real application tests we measured signal-to-noise ratio (SNR). From 

the experiments of simulation test, at the highest level noise of 95 % the obtained 

PSNR and SSIM are 23.584 dB and 0.696 respectively. These are higher than the 

results of other algorithms that are 16.697 dB and 0.475, respectively, for DBA, 

16.696 dB and 0.408 for NAFSM, and 18.860 dB and 0.568 for NASNLM.         

The denoising times for DBA, NAFSM, NASNLM, and ASAM were obtained as 

6.469 s, 5.186 s, 36.735 s, and 5.197 s respectively. From the experiments of real 

application test we obtained the SNR for DBA, NAFSM, NASNLM, and ASAM   

as 32.42 dB, 6.01 dB, 18.77 dB, and 32.96 dB, respectively. In general, these results 

show that ASAM filter is superior to the existing filtering methods. The ASAM 

filter improved the image restoration quality, especially in removing the high-

density white spot noise, and was able to yield good filtering result which exhibits 

better PSNR, SSIM, denoising time, and qualitative visual inspection. 

 

© 2018 Atom Indonesia. All rights reserved 
 

INTRODUCTION 
 

Neutron radiography has been widely used in 
various fields of research and Non-Destructive 

Testing (NDT) [1-3]. At the GA Siwabessy 

Multipurpose Reactor (RSG-GAS)-BATAN,         
an Indonesian research nuclear reactor, Neutron 
Radiographic Facility (NRF) was installed in 1992. 
The NRF is equipped with a scintillator sensor,        
a reflector mirror, and a CCD camera for digital   
data acquisition. To obtain images from NRF,       
the neutron beam is converted to a visible light sing 
a scintillating screen sensor [4,5]; then, the image of 
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the sample on the scintillating screen is transmitted 
and reflected by a tilted mirror to a CCD camera.  

Experimentally, CCD cameras must be 
validated for detector efficiency against parameters 
on which it depends, such as heat disturbance, 
gamma sensitivity, and stability [6]. Although the 
CCD camera is not irradiated directly, a large 
number of radiation particles hit the CCD detector 
and produce white spot noise (WSN) in the image. 
The WSN is also produced by secondary scattered 
neutron and gamma radiation hitting the CCD 
detector in spite of sophisticated shielding [7-9]. 
The WSN is an impulse noise which has random 
intensity, but generally brighter than the average 
pixel intensity in the radiographic image. It causes 
degradation of image resolution and loss of image 
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detail, and potentially results in failure of further 
evaluations, especially in 2D and 3D tomographic 
reconstruction. Therefore, removal the WSN and 
preservation of the image details are crucial 
preprocessing in neutron imaging. 

Recently, several techniques to remove the 

impulse noise was proposed  [10-25]; however, not 

so much development occurs on the technique to 

remove WSN, since not all impulse noise removal 

algorithms can be used to remove WSN. One of the 

most commonly used methods is the median filtering, 

which replaces a pixel's center value in sliding 

window with the median value of its neighbors.        

A hybrid method between adaptive threshold and 

mean harmonic filtering was proposed [26]. 

However, for high-density noise, these methods 

could not be performed perfectly since median-based 

and mean harmonic filters restore each pixel with an 

approximate value regardless whether it is a noise or 

noise-free pixel. To improve the filtering, an 

algorithm that combines the Laplacian of Gaussian 

(LoG), adaptive threshold, and median filters was 

proposed
 

[27]. The algorithm could satisfactorily 

eliminate WSN and retain the image details. 

However, it could not eliminate WSN with variable 

sizes, shapes, and occurrence. To overcome this 

drawback, the iterative procedure uses glitches      

and bad pixel algorithms was implemented [28]. 

However, this algorithm cannot be used in high-

density noise as this procedure only detects either the 

first or the last element of an array as outliers in 

sliding windows that has a maximum size of 5×5.  

In order to address the above drawbacks,           

a novel technique using hybrid method between global 

threshold and adaptive switching alternative median 

(ASAM) filter is proposed. The technique has three 

stages: (1) separating noise from the image using         

a threshold, (2) marking noisy and noise-free pixels,   

and (3) removing the noise by the ASAM algorithm. 

The ASAM algorithm is developed from the switching 

adaptive median filter (SM) [29] followed by adding    

a secondary block filtering (SBF). The addition of   

SBF block is a new technique in high-density impulse 

noise removal and the main contribution of this study. 

The ASAM filter could remove high-density noise and 

give better peak signal-to-noise ratio (PSNR) and 

structural similarity (SSIM) index than the existing 

algorithm. 

 

 

EXPERIMENTAL METHODS 
 

The purpose of this study is to eliminate high-

density WSN on neutron radiographic images while 

preserving the detailed image information at the same 

time. The three stages that are proposed will be 

explained in the following modules.  

Noise intensity detection module 
 

WSN is a random value impulse noise that    

has different probabilities and random intensities.     

The main purpose of this module is to separate the 

noise from the image by converting a random value 

impulse noise into a fixed one using global threshold 

expressed in eq. (1). 

     (          ) (1) 

where Imax and Imin denote maximum and minimum 

pixel intensity, respectively. T0 denotes a specified 

threshold value, and T denotes the threshold value.   

The optimal value of T0 in this experiment is 30 %.   

As expressed in eq. (2), the pixels that have greater 

value than the threshold T are considered as noise 

pixels and replaced by a maximum of 255 for 8-bit 

image. The values of other pixels are maintained to 

preserve the image details. 

 (   )  {
 (   )                  (   )   

                         (   )   
 (2) 

where X(i,j) denotes the pixel intensity at position (i,j).  

Figures 1(a) and 1(b) show the histogram of 

radiographic image of a valve before and after 

threshold process, respectively. After threshold 

processing, the intensities of the noise are collected at 

the end of the noisy image histogram. In this case,    

the number of noisy pixels is 152.927 pixels or about 

14.58 % for optimal T0 value of 30 %. 
 

 
(a) 

 

 
(b) 

 

Fig. 1. Histogram of radiographic image (a) before thresholding 

(b) after thresholding with T0 of 30 %. 
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Noise position detection module  
 

The module is used to locate noise and non-

noise pixels, respectively. Noise position detection 

is performed by thresholding the image using binary 

masking as expressed in eq. (3). 
 

  (   )  {
                      (   )          

         (   )                
 (3) 

 

where BM(i,j) denotes the binary mask value and 

X(i,j) is the pixel intensity at position (i,j). If X(i,j) 

equals to the maximum value, then X(i,j) is 

considered as noise, so that the value of BM(i,j) = 0. 

Otherwise, if the X(i,j) not equal to maximum, then 

X(i,j) is non-noise pixel, so that BM(i,j) = 1. Noise 

pixels are marked by black intensity, while         

non-noise pixels are marked by white intensity       

in the binary image, as shown in Fig. 2. 

 

 
 

Fig. 2. Binary mask of image after thresholding with T0 of 30 %. 

 

 

Noise cancellation module 
 

The noise cancellation module consists of   

two filtering blocks, namely main and secondary 

block filtering, respectively, as shown in Fig. 3.   

The mathematical model of the noise cancellation 

module is expressed in eq. (4), 

 (   )      (   )    
(    ) *(   )   (   )  (   )   (   )+ (4) 

where Y(i,j) denotes the output pixel, X(i,j) denotes 

the input pixel, BM denotes binary mask, Ma(i,j) 

denotes a filtering process using main block 

filtering, Mb(i,j) denotes a filtering process using 

secondary block filtering, and a and b denote 

alternative parameters for the main or secondary 

block, where a = 0 and b = 1 for the main block 

filtering or a = 1 and b = 0 for secondary block 

filtering. The filtering process uses a sliding window 

W2f+1 with odd positive number of (2f+1)×(2f+1) 

dimensions given in eq. (5) [30]. 

     (   )   (       )      (5) 

where m, n ϵ {-f...0...+f).  

 
If the centered pixel in the sliding window is 

a noise-free pixel (BM = 1) then the output pixel      
is the same as the input pixel, Y(i,j) = X(i,j). 
Otherwise, if it is a noise pixel (BM = 0), the output 
pixel becomes 

 (   )  (   )   (   )  (   )   (   ) (6) 
 

Then, noise-free neighboring pixels G2f+1(i,j) in the 

sliding window are calculated as:  

     (   )   ∑  (       )
 
        (7) 

where N(i+m, j+n) = 1 for noise-free pixels. All of 
the “noise-free pixels” will be used as candidates for 
selecting the median pixel, given by eq. (8) [30]. 

 (   )         * (       )+ (8) 

The first filtering process will by default 
utilize the main block filtering, and the size of 
sliding window is initialized to 3×3 or f = 1. In main 
block filtering, if the current sliding window did not 
have a minimum number of three noise-free pixels 
(i.e., G2f+1(i,j) < 3 ), then the sliding window will be 
expanded by one pixel (i.e. f  f+1 ). This procedure 
is repeated until the criteria of G2f+1(i,j) > 3 and f < 3 
are fulfilled. If the criteria in the main block have 
been fulfilled, the pixel at (i,j) is replaced by median 
value, then the sliding window will be shifted to the 
next pixel, f returns to the initial value and the ouput 
pixel becomes 

 

 (   )  (   )   (   )  (9) 

Otherwise, if the criteria of the main block 
filtering are not fulfilled, then the filtering process   
is switched to the secondary block filtering.            
In secondary block filtering, the size of sliding 
window of 9×9 or f = 4 is implemented. If the 
current sliding window does not have the minimum 
number of one noise-free pixel (i.e., G2f+1(i,j) < 1), 
then the sliding window will be expanded by one 
pixel (i.e., f  f + 1). This procedure is repeated 
until the criteria of G2f+1(i,j) > 1 and f < 9 are 
fulfilled. If the criteria in the secondary block 
filtering have been fulfilled, the pixel at (i,j) is 
replaced by median value, then the sliding window 
will be shifted to the next pixel, f returns to the 
initial value and the ouput pixel becomes 

 

 (   )  (   )   (   )  (10) 

Ma(i,j) and Mb(i,j) denote the median value for main 

block filtering and secondary block filtering, 

respectively, in accordance with eq. (8). 
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 Fig. 3. Architecture of the ASAM algorithm. 

 

 

RESULTS AND DISCUSSION 
 

The experiments were performed using 
standard testing image and real neutron radiographic 
images. The results are presented and compared     
to the results of well-established algorithms for    
impulse noise removal based on switching methods, 
namely noise adaptive fuzzy switching median 
(NAFSM) filter [30], decision-based algorithm 
(DBA) [31], and adaptive switching non-local mean 
(NASNLM) [19].  

The standard testing image results are 
evaluated based on such noise removal qualities as 
peak signal-to-noise ratio (PSNR) and structural 
similarity (SSIM) index [32]. For real application 
images, the results are measured based on signal-to-
noise ratio (SNR) [33]. The PSNR is calculated 
using eq. (11) as follows: 

            (
  

   
) (11) 

where L denotes the dynamic intensity range of 

image pixels, and the MSE denotes the mean 

squared error as expressed in eq. (12). 
 

     
 

  
∑ ∑ (       )

  
   

 
    (12) 

 

Here, M and N are the dimensions of the image, yij is 

the pixel intensity at location (i,j) in the original 

image, and xij is the pixel intensity at location (i,j) in 

the filtered image.  

The SSIM is calculated using eq. (13) as 

follows: 

    (   )   (
        

  
    

    
)
 

(
        

  
    

    
)
 

(
      

       
)
 

 (13) 

where μx and μy denote the average of the original 
and the denoising image intensities, respectively, σx 

and σy denote the standard deviation of the original 
and the denoising image, respectively, σxy                       
is the cross-correlation between the original      
image and the denoising image, C1 = (K1L)

2
 and     

K1 = 0.01, C2 = (K2L)
2
 and K2 = 0.03, C3 = C2/2, and 

α = β = γ = 1. If two images are similar, the SSIM 
index is closer to 1.  

The SNR is calculated using eq. (14) as 

follows: 

           (
  

  
) (14) 

where Ps denotes the average power of the signal, 

which is given by the average value of the pixels in 

the image, and PN denotes the noise power which is 

given by the variance of the pixel values in such a 

region [33]. 

The experiments were performed in 

MATLAB R2014a using a PC with Windows 7 

operating system, 8 GB RAM, and an Intel(R) 

Core(TM) i5-3337U CPU @1.80 GHz. 

 

 

Simulation results of ASAM 
 

The 8-bit gray-scale Lena image with a size 

of 512×512 pixels is used as a standard test image 

which contains plenty of textural details, smooth 

region and border. To simulate the degradation of 

neutron radiographic images, white spot noise was 

added to the Lena image by modifying the pepper 

into salt in salt and pepper noise. The image was 

corrupted by noise densities varying from 10 % to 

95 % and filtered using several denoising methods, 

namely DBA, NAFSM, NASNLM, and ASAM, 

respectively. The PSNR results of these filters are 

showed in Fig. 4. 

 

 
 

Fig. 4. The PSNR comparison between ASAM and other filters. 

 
It can be seen that the ASAM filter 

outperformed other filters used in the existing 

literatures by having the highest PSNR values, 

especially at noise densities in the 40 % to 95 % 

range. At noise densities in the 10 % to 30 % range, 

the PSNR of ASAM filter equal to that of NAFSM, 

since both filters used a similar method, i.e., simple 

switching median (SM) filter [29]. However,          

at higher noise densities, the ASAM filter is 

switched to secondary block filtering as filtering 

alternative. ASAM filter removes not only much 
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noise but also preserves more details, represented as 

SSIM results shown in Fig. 5.  

 

 
 

Fig. 5. The SSIM comparison between ASAM and other filters. 

 

The addition of secondary block filtering in 

ASAM filter resulted in highest similarity                             

level, compared to other filters, especially at noise 

densities in the 50 % to 95 % range. Clearly,                 

ASAM filter achieves the highest PSNR and                 

SSIM compared to DBA, NAFSM, and NASNLM 

filters.  

Figure 6. shows the restoration results for 

Lena image that is corrupted with white spot noise 

of 95 %. Visually, it can be seen that the ASAM 

filter can remove the noise successfully, while other 

filtering methods could not successfully remove   

the noise.  

 

   

(a) (b) (c) 

   

(d) (e) (f) 

 

Fig. 6. (a) Original gray-scale Lena image; (b) Degraded image 

by WSN of 95 % noise density; (c) Restored image by DBA; 

(d) Restored image by NAFSM; (e) Restored image by 

NASNLM; and (f) Restored image by ASAM filter. 

 

We also measured the denoising time for each 

filtering method in the simulations and presented it 

graphically in Fig. 7. The ASAM filter performance 

is better than other algorithms, except for 95 % 

noise density case. In this case, ASAM filter needs 

0.3 seconds longer than NAFSM.  

 

 
 

Fig. 7. The denoising time comparison between ASAM and 

other denoising algorithms. 

 
 

Real application tests 
 

In the real application data testing, we                 

used water valve radiographic image as sample     

data. Noise in the neutron image is changed                     

from random value impulse noise to fixed                      

value impulse noise using threshold module.                 

Then, thresholded result is filtered using                 

DBA, NAFSM, NASNLM, and ASAM filters, 

respectively. 

Figure 8(a) shows the noisy thermal neutron 

radiographic image of water valve as original  

image. The image was taken from NRF BATAN 

using instrumental parameters described in [34]              

and was acquired in 8 minutes of exposure                     

time. Figure 8(b) shows the noisy image that                     

has been separated from noise and image                      

detail using specified threshold value T0 of                          

30 %. The number of noisy pixels that can be 

detected is 152 927 pixels or 14.58 % of the total 

number of pixels. Figures 8(c) to 8(f) show the 

filtering results using each denoising method. 

Results are compared qualitatively by visual 

inspection and quantitatively using the signal-to-

noise ratio (SNR). 

It can be seen that NAFSM and NASNLM 

filters failed to completely remove white spot noise 

in the image. Obviously, only the DBA and the 

proposed ASAM filters are able to produce 

perceptible restoration images. However, the ASAM 

attained an SNR that is 1.64 % higher compared to 

DBA filter. The ASAM filter also resulted in more 

homogenous image, as presented by its lower 

standard deviation. 
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(a) Original Image 

SNR=25.31 dB 

(b) Noisy image  threshold 

SNR=5.03 dB 

  
(c) DBA 

SNR=32.42 dB 

(d) NAFSM 

SNR=6.01 dB 

  
(e) NASNLM  

SNR=18.77 dB 

 

(f) ASAM 

SNR=32.96 dB 

 

Fig. 8. (a) Valve radiographic image as original image; (b) 

threshold result; (c) DBA filtering result; (d) NAFSM     

filtering result; (e) NASNLM filtering result; (f) ASAM 

filtering result. 

 
The threshold value T0 strongly influenced   

the number of noisy pixels that can be detected.     

As shown in Table 1, ASAM filter threshold 

selection affected to the statistics of noise     

detected in mean, standard deviation, and SNR 

parameters.  

 
Table 1. Effect of Threshold T0 in ASAM filtering. 
 

T0 (%) 

Number of 

Noise 

Detected (%) 

Mean 
Standard 

Deviation 
SNR (dB) 

50 0.017 77.880 4.381 25.00 

45 0.024 77.877 4.362 25.03 

40 0.052 77.858 4.296 25.16 

35 0.685 77.591 3.714 26.40 

30 14.584 75.460 1.750 32.96 

 
As presented in Table 1, it can be seen that for        

T0 = 30 %, ASAM filtering achieved the highest 

SNR with highest spatial homogeneity with lowest 

standard deviation.  

CONCLUSION 
 

In this paper, we proposed ASAM filter for 

white spot noise removal of neutron radiographic 

image. The ASAM filter is able to suppress high-

density white spot noise and at the same time 

preserve fine image details. In the simulation using 

standard (Lena) and real application (neutron 

radiographic) images, ASAM filtering results are 

superior to other filtering method results. Standard 

image simulation showed that for denoising of white 

noise at the highest noise level of 95 %, the PSNR 

of DBA, NAFSM, NASNLM, and ASAM were 

16.6967 dB, 16.696 dB, 18.860 dB, and 23.584 dB, 

respectively. The denoising times for DBA, 

NAFSM, NASNLM, and ASAM were 6.469 s, 

5.186 s, 36.735 s, and 5.197 s, respectively. Using 

real application image, the ASAM has performed 

better than other methods. The SNR of DBA, 

NAFSM, NASNLM, and ASAM were 32.42 dB, 

6.01 dB, 18.77 dB, and 32.96 dB, respectively.       

In general, ASAM filter improves restoration 

quality of images, especially that has a high density 

of white noise, and is able to yield good filtering 

result with efficient running time. 
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