Atom Indonesia

Journal homepage: http://aij.batan.go.id

Spectral Comparison of Neutron-Irradiated Natural and Enriched Ytterbium Targets for Lu-177 Production

M. Maiyesni^{1*}, S. Febriana¹, I. Kambali² and D. Kurniasih¹

¹Center for Radioisotope and Radiopharmaceutical Technology, National Nuclear Energy Agency, Puspiptek Area Serpong, Tangerang Selatan 15310, Indonesia

²Center for Accelerator Science and Technology, National Nuclear Energy Agency,

Jl. Babarsari, Yogyakarta 55281, Indonesia

ARTICLE INFO

Article history: Received 1 February 2019 Received in revised form 29 April 2019 Accepted 13 May 2019

Keywords: Enriched ¹⁷⁶Yb ¹⁷⁷Lu Radioisotope Neutron Natural ytterbium Radioimmunotherapy

ABSTRACT

Beta-emitting radioisotope ¹⁷⁷Lu has been suggested for radioimmunotherapy, peptide receptor radionuclide therapy, or another radionuclide therapy due to its excellent properties for destroying cancer cells. In this experimental investigation, natural ytterbium (^{nat}Yb) and enriched ¹⁷⁶Yb targets were irradiated with thermal neutrons at 1.2×10^{14} cm⁻²s⁻¹ neutron flux for 95 hours. Using a high-purity germanium (HPGe) detector-based spectroscopy system, the post-irradiated targets were measured and the produced radioisotopes were identified according to their gamma ray emissions. Experimental results indicated that several radioisotopes such as ¹⁶⁹Yb and ¹⁷⁵Yb dominate the post-irradiated ^{nat}Yb target, though a relatively weak intensity of ¹⁷⁷Lu was also recorded. In contrast, ¹⁷⁷Lu radioisotope dominates the gamma rays observed in the post-irradiated enriched ¹⁷⁶Yb target following elution with HNO₃ solution. For the first time, evidence is found of ¹⁷⁵Yb impurity in the post-neutron-irradiated enriched ¹⁷⁶Yb₂O₃ target as a result of ¹⁷⁶Yb(n,2n)¹⁷⁵Yb nuclear reaction. This work recommends future ¹⁷⁷Lu radioisotope production using enriched ¹⁷⁶Yb₂O₃ target.

© 2019 Atom Indonesia. All rights reserved

INTRODUCTION

Application of nuclear technology for medical purposes has been of increasingly great interest, particularly for cancer studies [1-3]. In nuclear medicine, radioisotope-labeled chemical compounds are employed to image patients' organs to diagnose their diseases [4,5], whereas certain radioisotopes are also used for therapy [6,7]. Radioisotopes can be produced using a nuclear reactor [8] or a cyclotron or other accelerators [9-10], though less-commonlyused laser [11] and plasma focus [12] are also suggested for radioisotope production.

Current research activities on production technology of cyclotron-based diagnostic and therapeutic radioisotopes such as ¹⁸F, ⁶⁴Cu, ^{99m}Tc, ¹⁵³Sm, ²¹¹At, and ¹⁷⁷Lu have been conducted

*Corresponding author.

E-mail address: maiyesni@yahoo.com

theoretically and experimentally [13-21]. Apart from cyclotron-based radionuclide production, nuclear reactor-based radioisotope production has also been studied elsewhere, including for production of diagnostic and therapeutic radioisotope such as beta-emitting radioisotopes ¹³¹I and ¹⁵³Sm [22,23]. The use of nuclear reactor for radioisotope production is due to its excellent capability in generating high flux neutrons, though cyclotron-based radionuclide production has been more attractive due to its capability in generating no-carrier-added radionuclides [24].

In recent years, cancer treatment has shifted traditional radiotherapy to advanced from targeted radiotherapy or commonly coined as radioimmunotherapy as well as peptide receptor radionuclide therapy (PRRT) which uses radioisotope-labeled antibody to deliver cytotoxic radiation to abnormal cells [25]. One of the emerging radioisotopes used in radioimmunotherapy

DOI: https://doi.org/10.17146/aij.2019.930

is lutetium-177 (¹⁷⁷Lu) which emits beta particles with a half-life of 6.7 days. This excellent property has made it an excellent radiation source for radioimmunotherapy and PRRT. Previous research highlighted that ¹⁷⁷Lu-labeled radiopharmaceuticals are probably the best radiopharmaceuticals for treatment of small bone lesions [26]. Another investigation suggested that ¹⁷⁷Lu could be produced via thermal neutron captures since it has very high neutron capture cross-section of 2090 barns [27]. Direct production of ¹⁷⁷Lu can be performed through 176 Lu(n, γ)¹⁷⁷Lu reaction, whereas the indirect production can be done via 176 Yb (n,γ) 177 Yb \rightarrow 177 Lu reaction. Using an indirect method, Salek and coworkers [28] irradiated enriched ¹⁷⁶Yb target in thermal a neutron flux of 5×10^{13} cm⁻²s⁻¹ for 14 days which resulted in high radiochemical purities of ¹⁷⁷Lu (>95 %) at optimized conditions, though further investigation is required especially for different irradiation conditions to confirm the results.

In this work, systematic attempts are carried out to irradiate natural Yb (^{nat}Yb) and enriched ¹⁷⁶Yb targets using thermal neutrons generated by the G.A. Siwabessy nuclear reactor in Serpong, South Tangerang, Indonesia. Radioisotopes as a result of the thermal neutron irradiation of both targets are identified and compared from their gamma ray emissions.

EXPERIMENTAL METHODS

Target irradiation

The targets of interest in this work were natural ytterbium (III) nitrate pentahydrate ^{nat}Yb(NO₃)₃.5H₂O (99.999 % purity) in the form of powder purchased from Sigma-Aldrich, USA, and enriched ytterbium oxide $^{176}\mathrm{Yb_2O_3}$ (99.9 \pm 0.1 % enrichment of ¹⁷⁶Yb) in the form of powder purchased from Isoflex, USA. The ^{hat}Yb(NO₃)₃.5H₂O target employed in this work contained ¹⁶⁸Yb, ¹⁷⁰Yb, ¹⁷¹Yb, ¹⁷²Yb, ¹⁷³Yb, ¹⁷⁴Yb and ¹⁷⁶Yb as stated in the certificate of analysis. In addition, according to the certificate of analysis, the enriched 176 Yb₂O₃ target contained less than 0.05 % of other Yb atoms.

A total of 26.8 mg of ^{nat}Yb(NO₃)₃.5H₂O target and 9.4 mg of enriched ¹⁷⁶Yb₂O₃ target were prepared without any chemical treatment prior to thermal neutron irradiation. Each powdery target was placed in separate quartz tubes and then sealed by means of laser welding. Aluminium-based inner and outer capsules were then prepared to house the sealed quartz tubes containing the targets. The same procedure was conducted for both targets. In this experimental investigation, the neutron irradiation was conducted in the central irradiation position of the G.A. Siwabessy nuclear reactor in Serpong, Indonesia. A neutron flux of 1.2×10^{14} cm⁻²s⁻¹ bombarded the targets for 95 hours without any significant power disruption or failure. Note that for easier understanding, the natural ^{nat}Yb(NO₃)₃.5H₂O target and enriched ¹⁷⁶Yb₂O₃ target are called ^{nat}Yb and enriched ¹⁷⁶Yb targets for short, respectively.

Gamma ray detection and measurement

Following irradiation of the ^{nat}Yb and enriched ¹⁷⁶Yb, the post-irradiated targets were dissolved in 3.5 mL HCl (0.15 M, 32 %) and then mixed and heated to 200 °C. Afterward, 5 mL HCl 0.15 M were added into the solution until perfectly dissolved. In addition, the post-irradiated ^{nat}Yb(NO₃)₃.5H₂O was directly dissolved in 5 mL HCl 0.15 M. Following the chemical treatment, they were measured for their gamma ray emissions using a well-calibrated gamma ray spectroscopy system consisting of a HPGe detector coupled with a multichannel analyzer (MCA). The energy resolution of the spectroscopy system was 2 keV at a gamma energy of 662 keV. The radiation measurement was conducted for the bulk samples as well as liquid samples after being eluted with 5 ml of 3.4 N HNO₃ solution. The measurement was performed 5 days after neutron irradiation.

RESULTS AND DISCUSSION

Gamma spectrum of the bulk targets

The gamma ray spectra of the bulk $^{nat}Yb(NO_3)_3$ and enriched $^{176}Yb_2O_3$ are presented in Fig. 1, which shows significant differences in the energy and intensity of the emitted gamma rays. For the bulk ^{nat}Yb , while the emitted gamma ray intensities are relatively low, there are more radioisotopes identified in the spectrum since ^{nat}Yb contains several atoms which could become radioactive following neutron irradiation (see Fig. 1 inset).

Fig. 1. Gamma ray spectra of the bulk $^{nat}Yb(NO_3)_3$ (black line) and enriched $^{176}Yb_2O_3$ (blue line, inset). The x-axis and y-axis in the inset are in the same units as the main figure.

The corresponding gamma energies and identified radioisotopes are indicated in Table 1. There are three radioisotopes generated following neutron bombardment of ^{nat}Yb, namely ¹⁶⁹Yb as a result of ¹⁶⁸Yb(n, γ)¹⁶⁹Yb nuclear reaction, ¹⁷⁵Yb due to ¹⁷⁴Yb(n, γ)¹⁷⁵Yb nuclear reaction and ¹⁷⁷Lu resulted from ¹⁷⁶Yb(n, γ)¹⁷⁷Yb \rightarrow ¹⁷⁷Lu nuclear reaction. It should be noted that the other Yb atoms contained in the ^{nat}Yb target could have also been transmuted into new stable isotopes. For example, ¹⁷⁰Yb becomes ¹⁷¹Yb following ¹⁷⁰Yb(n,X)¹⁷¹Yb reaction, ¹⁷¹Yb becomes ¹⁷²Yb as a result of ¹⁷¹Yb(n,X)¹⁷²Yb reaction, and ¹⁷³Yb transmutes into ¹⁷⁴Yb due to ¹⁷³Yb(n,X)¹⁷⁴Yb reaction. In addition, neutron irradiation of ¹⁷⁶Yb atom could result in ¹⁷⁷Yb radioisotope, though it would have decayed since its half life is 1.91 hours.

For the bulk enriched ¹⁷⁶Yb₂O₃ target, there is little gamma ray observed in the spectrum which belongs to ¹⁷⁷Lu radioisotope following ¹⁷⁶Yb(n, γ)¹⁷⁷Yb \rightarrow ¹⁷⁷Lu nuclear reaction as, again, shown in Table 1. While gamma rays in the energy range between 60 and 400 keV dominate, there also several significant intensities in the energy range below 60 keV. The low-energy emissions are presumably due to X-rays emitted by ¹⁶⁹Yb, ¹⁷⁵Yb, and ¹⁷⁷Lu [29].

Table 1. Radioisotopes generated following neutron irradiation of the bulk $^{nat}Yb(NO_3)_3$ and enriched $^{176}Yb_2O_3$ targets.

Bulk	Energy	Produced	Half	Nuclear
target	(keV)	radioisotope	life	reaction
natYb(NO3)3	63.12	¹⁶⁹ Yb	32.02 days	168 Yb(n, γ) 169 Yb
	109.78	¹⁶⁹ Yb	32.02 days	168 Yb(n, γ) 169 Yb
	112.9	¹⁷⁷ Lu	6.65 days 1	76 Yb(n, γ) 177 Yb \rightarrow 177 Lu
	113.81	¹⁷⁵ Yb	4.18 days	174 Yb(n, γ) 175 Yb
	130.52	¹⁶⁹ Yb	32.02 days	168 Yb(n, γ) 169 Yb
	144.86	¹⁷⁵ Yb	4.18 days	174 Yb(n, γ) 175 Yb
	177.21	¹⁶⁹ Yb	32.02 days	168 Yb(n, γ) 169 Yb
	197.96	¹⁶⁹ Yb	32.02 days	168 Yb(n, γ) 169 Yb
	208.37	¹⁷⁷ Lu		76 Yb(n, γ) 177 Yb \rightarrow 177 Lu
	249.77	¹⁷⁷ Lu	6.65 days 1	76 Yb(n, γ) 177 Yb \rightarrow 177 Lu
	251.47	¹⁷⁵ Yb	4.18 days	174 Yb(n, γ) 175 Yb
	282.52	¹⁷⁵ Yb	4.18 days	174 Yb(n, γ) 175 Yb
	307.74	¹⁶⁹ Yb	32.02 days	168 Yb(n, γ) 169 Yb
	396.33	¹⁷⁵ Yb	4.18 days	174 Yb(n, γ) 175 Yb
enriched	112.9	¹⁷⁷ Lu	6 65 dava 1	76 Yb(n, γ) 177 Yb \rightarrow 177 Lu
176 Yb ₂ O ₃	208.3	¹⁷⁷ Lu		76 Yb(n, γ) 177 Yb \rightarrow 177 Lu
$I D_2 O_3$		¹⁷⁷ Lu		
	249.7	177 T		76 Yb(n, γ) ¹⁷⁷ Yb \rightarrow ¹⁷⁷ Lu
	321.3	¹⁷⁷ Lu	6.65 days '	76 Yb(n, γ) 177 Yb \rightarrow 177 Lu

Gamma spectrum of the liquid samples following elution

Following elution with HNO_3 solution, the detected gamma rays for the eluted ^{nat}Yb(NO₃)₃ and enriched ¹⁷⁶Yb₂O₃ are significantly different, particularly the gamma ray spectrum of enriched ¹⁷⁶Yb₂O₃ which shows stronger emissions.

The stronger emissions correspond to the lesser self absorption after elution. Moreover, high energy gamma rays (greater than 300 keV) can be clearly observed for both eluted samples. For example, in the bulk samples very weak gamma ray intensity is recorded for gamma energy of 396.33 keV (Fig. 1) [30], whereas much stronger intensities are observed for the eluted samples as can be seen in Fig. 2. The recorded gamma rays of enriched ¹⁷⁶Yb₂O₃ following neutron irradiation agrees with previous experimental results reported elsewhere [28].

Fig. 2. Gamma ray spectra of the $^{nat}Yb(NO_3)_3$ (blue line) and enriched $^{176}Yb_2O_3$ (black line) samples following elution with HNO₃ solution.

While the gamma ray spectrum for both $^{nat}Yb(NO_3)_3$ and enriched $^{176}Yb_2O_3$ after being eluted with HNO₃ are very similar, there is one significant difference in the spectrum, especially the strong emission at 208.37 keV observed in enriched $^{176}Yb_2O_3$ sample, which belongs to ^{177}Lu radioisotope that is hardly seen in $^{nat}Yb(NO_3)_3$ sample. In this case, it is clear that enriched ^{176}Yb is a much better target than ^{nat}Yb target for ^{177}Lu radioisotope in both $^{nat}Yb(NO_3)_3$ and enriched $^{176}Yb_2O_3$ samples after being eluted with HNO₃ are shown in Table 2.

One of the most interesting features discovered in the gamma ray spectrum of the enriched 176 Yb₂O₃ sample is the presence of strong emissions at 282.52 and 396.33 keV which correspond to 175 Yb signatures.

As already suggested previously, enriched 176 Yb₂O₃ target should be prepared for 177 Lu production applicable for radioimmunotherapy, PRRT, or other radionuclide therapies instead of nat Yb target. Some main reasons for not using nat Yb target are:

Bulk target	Energy (keV)	Produced radioisotope	Half life	Nuclear reaction
^{nat} Yb(NO ₃) ₃	63.12	¹⁶⁹ Yb	32.02 days	168 Yb(n, γ) 169 Yb
	109.78	¹⁶⁹ Yb	32.02 days	168 Yb(n, γ) 169 Yb
	112.90	¹⁷⁷ Lu	6.65 days	176 Yb(n, γ) 177 Yb \rightarrow 177 Lu
	113.81	¹⁷⁵ Yb	4.18 days	174 Yb(n, γ) 175 Yb
	130.52	¹⁶⁹ Yb	32.02 days	168 Yb(n, γ) 169 Yb
	137.66	¹⁷⁵ Yb	4.18 days	174 Yb(n, γ) 175 Yb
	144.86	¹⁷⁵ Yb	4.18 days	174 Yb(n, γ) 175 Yb
	177.21	¹⁶⁹ Yb	32.02 days	168 Yb(n, γ) 169 Yb
	197.96	¹⁶⁹ Yb	32.02 days	168 Yb(n, γ) 169 Yb
	208.37	¹⁷⁷ Lu	6.65 days	176 Yb(n, γ) 177 Yb \rightarrow 177 Lu
	249.77	¹⁷⁷ Lu	6.65 days	176 Yb(n, γ) 177 Yb \rightarrow 177 Lu
	251.47	¹⁷⁵ Yb	4.18 days	174 Yb(n, γ) 175 Yb
	282.52 [30]	¹⁷⁵ Yb	4.18 days	174 Yb(n, γ) 175 Yb
	307.74	¹⁶⁹ Yb	32.02 days	168 Yb(n, γ) 169 Yb
	396.33	¹⁷⁵ Yb	4.18 days	174 Yb(n, γ) 175 Yb
enriched	112.90	¹⁷⁷ Lu	6.65 days	176 Yb(n, γ) 177 Yb \rightarrow 177 Lu
¹⁷⁶ Yb ₂ O ₃	137.66	¹⁷⁵ Yb	4.18 days	176 Yb(n,2n) 175 Yb
	144.86	¹⁷⁵ Yb	4.18 days	176 Yb(n,2n) 175 Yb
	208.37	¹⁷⁷ Lu	6.65 days	176 Yb(n, γ) 177 Yb \rightarrow 177 Lu
	249.77	¹⁷⁷ Lu	6.65 days	176 Yb(n, γ) 177 Yb \rightarrow 177 Lu
	282.52	¹⁷⁵ Yb	4.18 days	176 Yb(n,2n) 175 Yb
	321.30	¹⁷⁷ Lu	6.65 days	176 Yb(n, γ) 177 Yb \rightarrow 177 Lu
	396.33 [30]	¹⁷⁵ Yb	4.18 days	¹⁷⁶ Yb(n,2n) ¹⁷⁵ Yb

Table 2. Radioisotopes identified from the eluted ^{nat}Yb(NO₃)₃ and enriched ¹⁷⁶Yb₂O₃ targets.

(1) The natural abundance of ¹⁷⁶Yb is only 12.76 %, (2) The ¹⁷⁶Yb(n, γ)¹⁷⁷Yb nuclear reaction has a low nuclear cross-section (2.4 barns) that results in low ¹⁷⁷Lu radioactivity. In contrast, nuclear crosssections for ¹⁶⁸Yb(n, γ)¹⁶⁹Yb and ¹⁷⁴Yb(n, γ)¹⁷⁵Yb nuclear reactions are 3470 barns and 65 barns respectively. Therefore, in the post-neutron irradiation ^{nat}Yb target, ¹⁶⁹Yb and ¹⁷⁵Yb intensities dominate. Furthermore, ¹⁷⁷Lu radioisotope dominates in the neutron irradiated ¹⁷⁶Yb₂O₃ target, though ¹⁷⁵Yb impurity is also present due to ¹⁷⁶Yb(n,2n)¹⁷⁵Yb nuclear reaction, (3) ¹⁷⁷Yb is very difficult to separate from the impurities since they have the same chemical properties.

CONCLUSION

Neutron irradiation of $^{nat}Yb(NO_3)_3$ and enriched $^{176}Yb_2O_3$ targets has been carried out using the G.A Siwabessy nuclear reactor in Serpong, Indonesia to compare the gamma ray spectrum and identified radioisotopes present in each target. Experimental results indicate that for $^{nat}Yb(NO_3)_3$ target, two radioisotopes, ^{169}Yb and ^{175}Yb , are generated and dominate the post-neutron irradiated ^{nat}Yb target, whereas relatively weak intensity of ^{177}Lu can also be produced. However, in the postneutron irradiated enriched $^{176}Yb_2O_3$ target, ^{177}Lu radioisotope dominates, though ^{175}Yb impurity is also present due to $^{176}Yb(n,2n)^{175}Yb$ nuclear reaction. This work clearly confirms that ^{177}Lu production results in much better radioactivity yield when performed using enriched 176 Yb₂O₃ target. In addition, future works should concentrate on 177 Yb- 177 Lu separation technique.

ACKNOWLEDGMENT

The authors would like to acknowledge the funding from The Indonesian National Nuclear Energy Agency (BATAN). Technical assistance from and discussion with several staff of the Center for Radioisotope and Radiopharmaceutical Technology, BATAN, are also gratefully acknowledged.

REFERENCES

- L. Deilami-nezhad, L. Moghaddam-Banaem, M. Sadeghi *et al.*, Appl. Radiat. Isot. **118** (2016) 124.
- L.E.L. Hendriks, B.C.M Hermans, M.H.J van den Beuken-van Everdingen *et al.*, Review J. Thorac. Oncol. **11** (2016) 155.
- L. Marcu, E. Bezak and B.J. Allen, Critical Reviews in Oncology/Hematology 123 (2018) 7.
- 4. I. Sonni, L. Baratto L and A. Lagaru, PET Clinics 12 (2017) 159.
- 5. F. Kataoka, N. Susumu, W. Yamagami *et al.*, , Gynecologic Oncology **140** (2016) 400.

- J.M. Van Dodewaard-de Jong, D.E. Oprea-Lager DE, L. Hooft *et al*,. A Systematic Review European Urology **70** (2016) 416.
- E. Evans and J. Staffurth, J. Surgery (Oxford) 36 (2018) 111.
- 8. I.M. Cohen, A. Robles, P. Mendoza *et al.*, Appl. Radiat. Isot. **135** (2018) 207.
- 9. M. Gumiela, Nucl. Med. Biol. 58 (2018) 33.
- 10. V.N. Starovoitova, L. Tchelidze and D.P. Wells, Appl. Radiat. Isot. **85** (2014) 39.
- S. Kimura and A. Bonasera, Nucl. Instrum. Meth. Phys. Res. A 637 (2011) 164.
- 12. M.V. Roshan, S. Razaghi, F. Asghari *et al.*, Phys. Lett. A **378** (2014) 2168.
- 13. I. Kambali, T. Heryanto, R. Rajiman *et al.*, Atom Indonesia **37** (2011) 5.
- 14. I. Kambali, H. Suryanto and Parwanto, Phys. Eng. Sci. Med. **39** (2016) 403.
- 15. I. Kambali, Parwanto, H. Suryanto *et al.*, Physics Research International **2017** (2017) 1.
- 16. I. Kambali, Atom Indonesia **3** (20.14) 129.
- 17. I. Kambali, Makara J. Sci. **21** (2017) 125. (in Indonesia)
- 18. I. Kambali, Journal of Physics: Conference Series **1116** (2018) 032013.
- 19. I. Kambali, Journal of Physics: Conference Series **1120** (2018) 012010.

- 20. I. Kambali, Journal of Physics: Conference Series **1120** (2018) 012011.
- 21. I. Kambali, Journal of Physics: Conference Series **1153** (2019) 012106.
- 22. B. El Bakkari, B. Nacir, T. El Bardouni et al., Ann. Nucl. Energy **78** (2015) 140.
- 23. Sh. Forughi, S. Hamidi, H. Khalafi *et al.*, Ann. Nucl. Energy **57** (2013) 16.
- 24. M. Sharifian, M. Sadeghi, B. Alirezapour *et al.*, Appl. Radiat. Isot. **22** (2017) 136.
- 25. J.M. Redman, E.M. Hill, D. Al Deghaither *et al.*, Mol. Immunol. **67** (2015) 28.
- 26. F.D-C.G. Liberal, A.A.S. Tavares and J.M-R.S. Tavares, Appl. Radiat. Isot. **110** (2016) 87.
- A. Dash, M.R.A. Pillai and F.F. Knapp, Nucl. Med. Mol. Imaging 49 (2015) 85.
- N. Salek, S.S. Arani, A.B. Samani *et al.*, Phys. Eng. Sci. Med. **41** (2017) 69.
- 29. Anonymous, X-Ray Transition Energies Database, National Institute of Standard and Technology, https://physics.nist.gov/PhysRefData/XrayTrans/Html/search.html (Retrieved in April 2019)
- 30. N.P. Dikiy, A.N. Dovbnya, N.V. Krasnoselsky *et al.*, Problems of Atomic Science and Technology **112** (2017) 130.