Addition of Lead (Pb)-Nitrate Filler on Polymer Composite Aprons for X-Ray Radiation Shielding

E. Afrianti, D. Tahir, B. Y. E. B Jumpeno, O. A. Firmansyah, J. Mellawati


Radiation shielding aprons are needed by radiation workers to minimize radiation exposure to the body. The aprons at present use fabric-coated lead plates which are heavy and rigid materials and therefore are not comfortable to use. Polymer aprons from cassava starch and glycerin with addition of Pb-nitrate filler at 0 %, 2 %, 4 %, and 6 % have been synthesized. Mixtures for synthesizing the polymer apron composites were heated using a magnetic stirrer at a speed of 800 rpm at 160 °C for 25 minutes. Then, the polymer apron composites were dried in an oven for 24 hours at 70 °C. The effectiveness of the apron was determined by calculating the attenuation coefficient (μ), half-value layer (HVL), and radiation absorption. The mechanical properties of the aprons were characterized by testing their tensile strengths using anA&D MCT-2150 universal tester. The result shows that the optimal addition of Pb-nitrate filler of as much as 6 % produced aprons with an attenuation coefficient of 1248 cm‑1, HVL of 0.54 cm, and radiation absorption of 25 %, while the aprons’ tensile strength was obtained as28.244 MPa. The addition of Pb-nitrate as a filler in apron composites proportionally improves the quality of materials used as radiation shields. More detailed research is still needed to obtain the best apron.


Polymer Apron; Filler; Pb-nitrate; Effectiveness; Tensile Strength

Full Text:



E. Salama, A. Maher and G. M. Youssef, J. Phys. Chem. Solids 131 (2019) 139.

M. Dogra, K. J. Singh, K. Kaur et al., Univers. J. Phys. Appl. 11 (2017) 190.

N. Aral, F. B. Nergis and C. Candan, Text Res. J. 86 (2015) 803.

Nurhasmi, D. Tahir, B. Abdullah et al., Mater. Sci. Forum 966 (2019) 41.

L. Seenappa, H. C. Manjunatha, B. M. Chandrika et al., J. Radiat. Prot. Res. 42 (2017) 26.

H. O. Tekin and O. Kilicoglu, J. Alloys Compd. 815 (2020) 152484.

T. Singh, A. Kaur, J. Sharma et al., Eng. Sci. Technol. Int. J. 21 (2018) 1078.

N. Cherkashina, V. Gavrish and T. Chayka, Materials Today: Proceedings 11 (2019) 554.

O. L. Tashlykov, S. Y. Shcheklein, V. Y. Lukyanenko et al, Nucl. Energy Technol. 2 (2016) 42.

S. Johansen, I. H. R. Hauge, P. Hogg et al, J. Med. Imaging Radiat. Sci. 49 (2018) 201.

V. Barsukov, I. Senyk, O. Kryukova et al., Material Today: Proceedings 5 (2018) 15909.

H. M. Soylu, F. Y. Lambrecht and O. A. Ershoz, J. Radioanal. Nucl. Chem. 305 (2015) 529.

Y. Elmahroug, M. Almatari, M. I. Sayyed et al., J. Non-Cryst. Solids 499 (2018) 32.

A. C. Souza, R. Benze, E. S. Ferrão et al., LWT Food Sci. Technol. 46 (2012) 110.

M. I. Sayyed, S. A. M. Issa and H. O. Teki, Mater. Chem. Phys. 217 (2018) 11.

A. S. Ouda and H. A. Abdel-Gawwad, HBRC Journal 13 (2017) 255.

S. Y. Astuti, H. Sutanto, G. W. Jaya et al., J. Phys.: Conf. Ser. 1217 (2019) 012016.

A. I. Wozniak, V. S. Ivanov, O. A. Zhdanovich et al., Orient. J. Chem. 33 (2017) 2148.

C. C. P. Fontainha, A. T. Baptista Neto, A. Pinheiro Santos et al., Mater. Res. 19 (2016) 426.

S. U. El-Kameesy, D. E. El-Nashar, S. El-Fiki et al., Int. J. Adv. Res. 3 (2015) 1017.


Copyright (c) 2020 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.