The Evaluation of Fission Barrier Height by Fission Toy Model Approach

R. Kurniadi, Z. Suud, Y. S. Perkasa

Abstract


Fission yields are compulsory data on the development of nuclear technology. Therefore, it is necessary to provide complete data. However, the expected experimental data encompass only a tiny fraction of various nuclides; not even all nuclides have fission product data. JENDL and ENDF are databases that have completed the experimental data. These databases were obtained through the process of evaluating experimental data. The evaluation technique used includes the results of theoretical research that has been carried out. Fission Toy Model (FTM) is a fission model proposed to complement the preexisting ones. Each model has advantages and disadvantages. The advantage of the FTM model is that it uses stochastic principle in its calculations.This research aims to obtain a fission barrier through the FTM. The work is related to calculating the fission barrier using the random nature of nucleon position. The calculation technique is basically to take advantage of the random nature of the nucleon position to calculate the Coulomb energy. Then, by calculating several essential points, a data set was obtained that can be used to produce a curve that relates the Coulomb energy to the mass number and the atomic number of a nuclide.The success of this research is indicated by the calculation results that are close to the experimental value compared to other methods.


Keywords


Fission barrier; Fission Toy Model; Stochastic principle

Full Text:

PDF

References


J. Lee, C-S. Gil, Y-O Lee et al., Eur. Phys. J. A. 54 (2018) 173.

H. Moriyama and T. Ohnishi, Technical Reports of the Institute of Atomic Energy 166 (1974) 1.

J. Lee, Y.O. Lee, T. S Park et al., J. Korean Phys. Soc. 77 (2020) 1082.

A. C. Wahl, Notes on Development of Models for Systeinatic Trends in Fission-Product Yields from High and Low Energy Fission Reactions, presented at the 1999 CRP Mtg, IAEA (1999).

J.-F. Lemaître, S. Goriely, S. Hilaire et al., Phys. Rev. C. 99 (2019) 034612.

L. S. Danu, D. C. Biswas, B. K. Nayak et al., Fission Yield Calculations for 238U(18O,f), Proceedings of the DAE Symp. on Nucl. Phys. 63 (2018) 558.

Y. K. Gupta, D. C. Biswas, O. Serot et al., Phys. Rev. C. 96 (2017) 014608.

M. Bolsterli, E. O. Fiset, J. R. Nix et al., Phys. Rev. C. 5 (1972) 1050.

O. Litaize, O. Serot and L. Berge et al., Eur. Phys. J. A. 51 (2015) 177.

P. Möller, S. G. Nilsson and J. R. Nix, Nucl. Phys. A. 229 (1974) 292.

S. Bjornholm and J. E. Lynn, Rev. Mod. Phys. 52 (1980) 725.

H. C. Manjunatha, Indian J. Phys. 92 (2018) 507.

J. Khuyagbaatar, Nucl. Phys. A. 1002 (2020) 121958.

C. Ling, C. Zhou and Y. Shi, Eur. Phys. J. A. 56 (2020) 180.

Q. Z. Chai, W. J. Zhao, M. L. Liu et al., Chin. Phys. C. 42 (2018) 054101.

S. L. Whetstone, Phys. Rev. 114 (1959) 581.

U. Brosa and S. Grossmann, J. Phys. G: Nucl. Phys. 10 (1984) 933.

Ramanna, R. Suramanian and R. N. Aiyer, Nucl. Phys. 67 (1965) 529.

E. R. Marshalek and J. Weneser, Ann. Phys. 53 (1969) 569.

F. Minato, T. Marketin and N. Paar, Phys. Rev. C. 104 (2021) 044321.

B. M. A. Swinton-Bland, M. A. Stoyer, A. C. Berriman et al., Phys. Rev. C. 102 (2020) 054611.

M. Albertsson, Nuclear Fission and Fusion in A Random-Walk Model, Thesis for the Degree of Doctor of Philosophy in Engineering, Lund University (2021).

R. Kurniadi, Res. Phys. 11 (2018) 651.

R. Kurniadi, S. Viridi and A. Waris, J. Appl. Phys. Sci. Int. 2 (2015) 120.

G. Royer, J. Jahan and N. Mokus, Phys. Scr. 93 (2018) 094004.

Z. M. Niu and H. Z. Liang, Phys. Lett. B. 778 (2018) 48.

R. D. Present and J. K. Knipp, Phys. Rev. 57 (1940) 1188.

R. D. Present, F. Reines and J. K. Knipp, Phys. Rev. 70 (1946) 557.

D. L. Hill and J. A. Wheeler, Phys. Rev. 89 (1953) 1102.

W. J. Swiatecki, Phys. Rev. 101 (1956) 651.

J. R. Nix, Ann. Phys. 41 (1967) 52.

D. E. Ward, B. G. Carlsson, T. Døssing et al., Phys. Rev. C. 95 (2017) 024618.

H. Koura, Prog. Theor. Exp. Phys. 2014 (2014) 113D02.

A. Mamdouh, J. M. Pearson, M. Rayet et al., Nucl. Phys. A. 679 (2001) 337.

P. Moller, A. J. Sierk, T. Ichikawa et al., Phys. Rev. C. 79 (2009) 064304.




DOI: https://doi.org/10.17146/aij.2022.1154



Copyright (c) 2022 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.