Detection of Spoilage in Canned Pasteurized Milk Using the Radiographic Imaging Technique

D. T. Thuy, H. B. Tien, H. B. Ngoc, T. T. Kim, T. T. Ngoc

Abstract


After packed into sterilized containers with a closed and rigorous process, pasteurized milk has been ensured for its hygiene and safety factors. However, distortions can occur during storage and transportation, causing the container to open, allowing harmful microorganisms to enter and damage the product. This research proposed a radiographic imaging technique to detect and evaluate the spoilage of canned pasteurized milk. The X-ray images show that the milk cans, which were left open for three days at 300 K, indicated regions with abnormal density with the smallest detectable size from 100 µm or larger. Density heterogeneity would be clearer in the following days and depending on the sample. An algorithm was developed to identify spoilage products automatically with an accuracy of up to 100 % and a speed of 0.0057 s/product. This approach may be suitable for industrial scale to control the quality of dairy products.


Keywords


Radiation application; Non-destructive; X-ray imaging

Full Text:

PDF

References


M. Lu and N. S. Wang, Spoilage of Milk and Dairy Products, in: The Microbiological Quality of Food, Woodhead Publishing, United States (2017) 151.

C. Willis, F. Jorgensen, H. Aird et al., J. Appl. Microbiol. 124 (2018) 535.

M. L. Ranieri, R. A. Ivy, W. R. Mitchell et al., Appl. Environ. Microbiol. 78 (2012) 5855.

Q. Wei, X. Wang, D. W. Sun et al., Trends Food Sci. Technol. 86 (2019) 453.

E. Ouacha, B. Faiz, A. Moudden et al., Phys. Procedia 70 (2015) 406.

T. Nishizu, Jpn. J. Food Eng. 21 (2020) 53.

V. Mohammadi, M. Ghasemi-Varnamkhasti and L. González, Trends Food Sci. Technol. 61 (2017) 38.

M. T. M. Khairi, S. Ibrahim, M. A. M. Yunus et al., Meas. 146 (2019) 490.

B. Alouache, A. Touat, T. Boutkedjirt et al., Phys. Procedia 70 (2015) 1057.

L. Elvira, L. Sampedro, J. Matesanz et al., Food Res. Int. 38 (2005) 631.

K. Kim, H. Kim, J. Chun et al., CMC-Comput. Mater. Continua 67 (2021) 2547.

S. R. Purohit, L. E. Jayachandran, A. S. Raj et al., X-ray Diffraction for Food Quality Evaluation, in: Evaluation Technologies for Food Quality, Woodhead Publishing Series in Food Science, Technology and Nutrition, Woodhead Publishing, India (2019) 579.

G. V. Pashkova, A. N. Smagunova, and A. L. Finkelshtein, TrAC, Trends Anal. Chem. 106 (2018) 183.

R. P. Haff and N. Toyofuku, Sens. Instrum. Food Qual. Saf. 2 (2008) 262.

Y. Yu, S. A. Velastin and F. Yin, Inf. Process. in Agric. 7 (2020) 556.

K. Tian, J. Li, J. Zeng et al., Comput. Electron. Agric.165 (2019) 104962.




DOI: https://doi.org/10.17146/aij.2022.1161



Copyright (c) 2022 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.