Neutronic Evaluation of Using a Thorium Sulfate Solution in an Aqueous Homogeneous Reactor

D. Pérez, D. Milian, L. Hernández, A. Gámez, D. Lorenzo, C. Brayner

Abstract


Radioisotope 99Mo is one of the most essential radioisotopes in nuclear medicine. Its production in an Aqueous Homogeneous Reactor (AHR) could be potentially advantageous compared to the traditional technology, based on target irradiation in a heterogeneous reactor. An AHR conceptual design using low-enriched uranium for the production of 99Mo has been studied in depth. So far, the possibility of replacing uranium with a non-uranium fuel, specifically a mixture of 232Th and 233U, has not been evaluated in the conceptual design. Therefore, the studies conducted in this article aim to evaluate the neutronic behavior of the AHR conceptual design using thorium sulfate solution. Here, the 232Th-233U composition to guarantee ten years of operation without refueling, conversion ratio, medical isotopes production levels, and reactor kinetic parameters were evaluated, using the computational code MCNP6. It was obtained that 14 % 233U enrichment guarantees the reactor operation for ten years without refueling. The conversion ratio was calculated at 0.14. The calculated 99Mo production in the AHR conceptual design resulted in 24.4 % higher with uranium fuel than with thorium fuel.

Keywords


99Mo production; Aqueous Homogeneous Reactor; Thorium fuel; MCNP; fuel solution; Thorium Sulfate

Full Text:

PDF

References


IAEA, Homogeneous Aqueous Solution Nuclear Reactors for the Production of Mo-99 and Other Short Lived Radioistotopes, Vienna, 2008.

NEA, The Supply of Medical Radioisotopes, 2019 Medical Isotope Demand and Capacity Projection for the 2019-2024 Period, 2019.

H. Khodadadi and N. Ayoobian, Prog. Nucl. Energy 121 (2020) 103233.

R. Roper, M. Harkema, P. Sabharwall et al., Ann. Nucl. Energy 169 (2022) 108924.

C. Wu, C. Yu, A. Zhang et al., Appl. Radiat. Isot. 173 (2021) 1.

D. M. Pérez, D. E. M. Lorenzo, L. P. R Garcia et al., J. Thermodyn. 2015 (2015) 1.

D. M. Pérez, D. E. M. Lorenzo, C. A. B. Lira et al., Int. J. Nucl. Energy Sci. Technol. 11 (2017) 1.

D. M. Pérez, D. E. M. Lorenzo, C. A. Brayner de Oliveira Lira et al., Ann. Nucl. Energy 128 (2019) 148.

D. M. Pérez, D. M. Pérez , L. H. Pardo et al., Int. J. Nucl. Energy Sci. Technol. 14 (2020) 235.

D. M. Pérez, L. H. Pardo, D. M. Pérez et al., J. Radiat. Sci. 8 (2020) 1.

D. M. Pérez, D. M. Pérez, L. H. Pardo et al., Int. J. Thermodyn. 24 (2021) 9.

L. H. Pardo, D. M. Pérez, D. M. Pérez et al., Prog. Nucl. Energy 134 (2021) 103692.

L. H. Pardo, D. M. Pérez, D. M. Pérez et al., Int. J. Nucl. Energy Sci. Technol. 15 (2021) 61.

D. M. Pérez, A. G. Rodríguez, L. H. Pardo et al., Int. J. Thermodyn. 24 (2021) 125.

P. P. Boldyrev, V. S. Golubev, S. V. Myasnikov et al., The Russian ARGUS Solution Reactor HEU-LEU Conversion: LEU Fuel Preparation, Loading and First Criticality, RERTR 2014 - 35th, International Meeting on Reduced Enrichment for Research and Test Reactors (2014) 8.

T. Goorley, M. James, T. Booth et al., Nucl. Technol. 180 (2012) 298.

F. Yassar, A. W. Harto and Syarip, J. Phys. Conf. Ser. 1080 (2018) 012021.

G. Abrar, Sihana and Syarip, Nucl. Eng. Des. 383 (2021) 111428.

A. L. Nichols, D. L. Aldama and M. Verpelli, Handbook of Nulcear Data for Safeguards Database Extensions, 2008.

D. M. Pérez, Projeto e Análise Neutrônico-Termoidráulica de Um Reator Homogêneo Aquoso Usando Combustível de Baixo Enriquecimento Para a Produção de Radioisótopos Usados Na Medicina, Doctoral Thesis, Universidad Federal de Pernambuco, 2020.




DOI: https://doi.org/10.17146/aij.2022.1188



Copyright (c) 2022 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.