Dose Distribution of Radioxenon Due to a Hypothetical Accident of TRIGA Research Reactor in Bangladesh

K. M. Z. Zihan, M. A. Hoq, M. A. Khaer, M. T. Chowdhury, M. M. Rahman, M. S. Islam, M. M. Rahman

Abstract


Radiological dose distribution owing to the deposition of 131mXe, 133mXe, 133Xe, 135mXe, 135Xe, and 138Xe on ground and immersion considering a postulated accident of TRIGA Mark-II research reactor has been assessed. The radiological dose distribution has been carried out in various directions with the help of Gaussian Diffusion Model. Local meteorological data such as average wind speed, frequency, etc. has been collected and evaluated for various directions around the reactor site. For all the dominant directions, the maximum dose values due to 131mXe, 133mXe, 133Xe, 135mXe, 135Xe, 138Xe and the total (131mXe + 133mXe + 133Xe + 135mXe + 135Xe + 138Xe) were observed within the limit 3.03E-7–1.23E-4 µSv/h, 1.01E-5–4.09E-3 µSv/h, 0.0003–0.14 µSv/h, 2.29E-5–9.26E-3 µSv/h, 0.002 –1.111 µSv/h, 1.11E-5–4.55E-3 µSv/h, and 0.003–1.269 µSv/h, respectively. Dose distribution was found to be dominant due to immersion and the contribution was 87.55 %. There is shortage of data regarding the release of radioxenon in the atmosphere during nuclear accident especially in the case of TRIGA type research reactor. This paper is the first such detailed study on atmospheric release of radioxenon and its dose distribution for a full power- reactor and the consequences towards the environment and public health. The result can be applied to develop the radiological protective measures and to prepare an emergency response plan for the TRIGA reactor site.


Keywords


Radiological Dose; Immersion; Ground Deposition; Gaussian Diffusion Factor; Safety.

Full Text:

PDF

References


M. A. Hoq, M. A. M. Soner, M. A. Salam et al., Results Phys. 7 (2017) 975.

M. A. Hoq, M. A. M. Soner, A. Rahman et al., J. Environ. Radioact. 153 (2016) 68.

N. AELB, Guideline for Site Evaluation for Nuclear Power Plant, Atomic Energy Licensing Board, Selangor, Malaysia (2011).

Anonymous, Method for the Development of Emergency Response Preparedness for Nuclear or Radiological Accidents, IAEA-TECDOC-953, Vienna, IAEA (1997).

R. Ahangari and O. Noori-Kalkhoran, Radiat. Environ. Biophys. 58 (2019) 277.

Anonymous, Protective Action Guides and Planning Guidance for Radiological Incidents, U.S. Environmental Protection Agency, U.S, PAG (2013).

Anonymous, Preparedness and Response for a Nuclear or Radiological Emergency, IAEA-General Safety Requirements No. GSR Part 7, Vienna, IAEA (2015).

S. D. Shamsuddin, N. A. Basri, N. Omar et al., EPJ Web of Conferences 156 (2017) 1.

K. Gyamfi, S. A. Birikorang, E. Ampomah-Amoako et al., Sci. Technol. Nuc. Install. 2020 (2020) 1.

B. Cao, W. Cui, I. Rasheed et al., Bulg. Chem. Commun. 50 (2018) 78.

A. Pirouzmand, P. Dehghani, K. Hadad et al., Int. J. Hydrog. Energy 40 (2015) 15198.

S. S. Raza and M. Iqbal, Ann. Nucl. Energy 32 (2005) 1157.

S. A. Birikorang, R. G. Abrefah, R. B. M. Sogbadji et al., Prog. Nucl. Energy 79 (2015) 96.

N. Sadeghi, M. Sadrnia and S. Khakshournia. Nucl. Eng. Des. 257 (2013) 67.

J. L. Muswema, G. B. Ekoko, V. M. Lukanda, et al., Nucl. Eng. Des. 281 (2015) 51.

J. L. Muswema, G. B. Ekoko, J. K. -K. Lobo et al., J. Nucl. Eng. Radiat. Sci. 2 (2016) 024501-1.

A. Anvar and L and Safarzadeh. Ann. Nucl. Energy 50 (2012) 251.

J. L. Muswema, E. O. Darko, J. K. Gbadago et al., Ann. of Nucl. Energy 68 (2014) 239.

B. Cao, J. Zheng and Y. Chen, Sci. Technol. Nucl. Install. 2016 (2016) 3105878.

M. A. Hoq, M.A. Malek Soner, M. A. Salam et al., Appl. Radiat. Isot. 130 (2017) 29.

M. M. Rahman, M. A. H. Bhuiyan and Asaduzzaman, J. Nucl. Part. Phys. 4 (2014) 79.

M. M. Rahman, M. A. R. Akond, M. K. Basher, et al., World J. Nucl. Sci. Technol. 4 (2014) 81.

M. A. Malek, K. J. A. Chisty and M. M. Rahman, J. Mod. Phys. 3 (2013) 1572.

M. M. Rahman, M. M. Rahman, M. M. Rahman et al., Jahangirnagar University Journal of Science 26 (2003) 113.

S. N. A. Sulaiman, F. Mohamed, A. N. A. Rahim et al., Sains Malaysiana 48 (2019) 2277.

M. A. Hoq, M. A. M. Soner, M. A. Salam et al., Nucl. Eng. Technol. 50 (2018) 165.

M. A. Salam, M. A. M. Soner, M. A. Sarder et al., Ann. Nucl. Energy 68 (2014) 257.

M. I. Hosan, M. A. M. Soner, K. A. Kabir et al., Ann. Nucl. Energy 80 (2015) 447.

M. A. Hoq, M. A. M. Soner, M. A. Salam et al., Int. J. Nucl. Energy Sci. Technol. 14 (2020) 71.

Anonymous, Research Reactor Core Conversion Guidebook, IAEA-TECDOC-643, Vienna, IAEA (1992).

Anonymous, Generic Models for Use in Assessing the Impact of the Discharge of Radioactive Substances to the Environment, Safety Series No. 19, Vienna, IAEA (2001).

Anonymous, Generic Models and Parameters for Assessing the Environmental Transfer of Radionuclides from Routine Releases, Safety Series No. 57, Vienna, IAEA (1982).

H. Chember, Introduction to Health Physics, Third ed., The MeGraw-Hill Companies Inc., New York (1996).

Anonymous, Fundamental Calculational Model for the Determination of the Radiological Effects, Inside and Outside A Research Reactor, After Hypothetical Accidents, with Release of High Amounts of Fission Products from the Core, in: Research Reactor Core Conversion Guidebook, IAEA-TECDOC-643, Vol. 2, Vienna, IAEA-INTERATOM (1992) 211.

W. Huebschmann, K. Nester, P. Thomas, Ausbreitungsparameter Fuer Emissionshoehe, von 160 m und 195 m, Rep. KfK-2939, Kernforschungszentrum, Karlsruhe (1980).

E. Teller, Memories: A Twetieth-Century Journey in Sscience and Politics, Cambridge, MA: Perseus Publishing (2001).




DOI: https://doi.org/10.17146/aij.2022.1227



Copyright (c) 2022 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.