Neural Network Predictions of Atomic Form Factors and Incoherent Scattering Functions

B. Mohammedi, H. Benkharfia, B. Beladel, N. Mellel, K. Bessine, N. Moulai

Abstract


In order to predict atomic form factors and incoherent scattering functions which are used to calculate the coherent and incoherent total scattering cross sections, a technique based on artificial neural networks of the multilayer type was implemented. In this context, two neural models have been developed and compared with those in the literature. This study revealed both the accuracy of the results obtained and the effectiveness of the designed model. The mean relative error for the least estimated property does not exceed 16.5 %. The software realized in this way give a prediction of the above parameters for the input variables Z: Atomic number, x: sin(ϑ/2)/λ and E: Photon energy, and it provides users with flexibility for prediction. The advantages of this technique lie in its very fast handling, due to its ease of use, and in the two integrated networks, which it guarantees for a variety of input parameters such as atomic number, photon energy, and momentum transfer variable.


Keywords


Artificial neural networks; Atomic form factors; Incoherent scattering function; Compton total scattering cross sections.

Full Text:

PDF

References


J. H. Hubbell, Wm. J. Veigele, E. A. Briggs et al., J. Phys. Chem. Ref. Data 4 (1975) 471.

M. Herman and A. Trkov, ENDF-6 Formats Manual: Data Formats and Procedures for the Evaluated Nuclear Data Files. National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (2010).

D. A. Brown, M. B. Chadwick, R. Capote et al., Nucl. Data Sheets 148 (2018) 1.

H. Demuth and M. Beale, Neural Network Toolbox User's Guide. The MathWorks, Inc (2009).

C. Si-Moussa, S. Hanini, R. Derriche et al., Braz. J. Chem. Eng. 25 (2008) 183.

B. Beladel, B. Mohamedi, A. Guesmia et al., Radiochim. Acta 106 (2018) 1017.

D. E. Cullen, M. H. Chen, J. H. Hubbell et al., The Livermore Evaluated Photon Data Library (EPDL97) in the ENDF-6 Format. International Atomic Energy Agency, Vienna, Austria (2018).

https://www-nds.iaea.org/public/download-

endf/ENDF-B-VIII.0/photo/

A. Golbraikh and A. Tropsha, J. Mol. Graph. Model. 20 (2002) 269.

A. Bouali, S. Hanini, B. Mohammedi et al., Therm. Sci. 25 (2021) 3911.

A. Bouzidi, S. Hanini, F. Souahi et al., J Appl Sci. 7 (2007) 2450.

H. Sanikhani, R. C. Deo, Z. M. Yaseen et al., Geoderma 330 (2018) 52.

S. Y. Park, S. Y. Choi and S. D. Ha, Foodborne Pathog Dis. 16 (2019) 376.

T. Ross, J. Appl.Bacteriol. 81 (1996) 501.

D. G. Garson, AI Expert. 6 (1991) 47.

Sigma, Evaluated Nuclear Data File (ENDF) Retrieval & Plotting, National Nuclear Data Center, Brookhaven National Laboratory, NY (2011).

B. Pritychenko and A. A. Sonzogni, Nucl. Data Sheets. 109 (2008) 2822.




DOI: https://doi.org/10.55981/aij.2023.1275



Copyright (c) 2023

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.