Differential Cross Section With Volkov-Thermal Wave Function in Coulomb Potential
Abstract
Laser-assisted thermal electron-hydrogen atom elastic scattering was studied in the first-born approximation. The initial and final states of the projectile electron are described by the modified Volkov wavefunctions known as Volkov-Thermal wavefunctions. The laser-assisted thermal electron with energy ranges from 0.511 MeV to 4 MeV was considered to study the differential cross section (DCS) at azimuthal angles 30° and 14.7°, and laser-assisted field photon energy 1 eV to 3 eV are very weak at room temperature is around the room temperature 280 K to 300 K. The destructive interference was observed when a thermal electron absorbed a single photon from the laser field but no interference was found when a thermal electron emitted an electron to the laser field at a scattering angle . The DCS with eT scattering was found to be greater than a nonthermal electron in presence of laser field with scattering angle and incidence energy of the electron.
Keywords
Full Text:
PDFReferences
K. Nelissen, M. Liszi, M. Marco et al., Sci. Rep. 10 (2020) 3108.
A. Leitenstorfer, A. S. Moskalenko, T. Kampfrath et al., J. Phys. D: Appl. Phys. 56 (2023) 223001.
P. Zhang, S. S. Bulanov, D. Seipt et al., Phys. Plasmas. 27 (2020) 050601.
H. Zeng, D. Ou, L. Chen et al., Opt. Eng. 57 (2018) 026106.
T. W. B. Kibble, Phys. Rev. 138 (1965) B740.
F. C. Vélez, J. Kamiński and K. Krajewska, At. 7 (2019) 1.
M. C. Asplund, J. A. Johnson and J. E. Patterson, Anal. Bioanal. Chem. 411 (2019) 5001.
K. N. Dzhumagulova, E. O. Shalenov and T. S. Ramazanov, Phys. Plasmas 22 (2015) 082120.
N. F. Mott and H. S.W. Massey, The Theory of Atomic Collisions, 3rd ed., Oxford University Press, Oxford (1965).
K. Yadav, S. H. Dhobi, S. Maharajan et al., Eurasian Phys. Tech. J. 18 (2021) 82.
S. H. Dhobi, K. Yadav, S. P. Gupta et al., Ukr. J. Phys. 67 (2022) 227.
R. Kanya and K. Yamanouchi, At. 7 (2019) 1.
K. Amini, M. Sclafani, T. Steinle, A. T. Le et al., Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 8173.
H. Fuest, Y. H. Lai, C. I. Blaga et al., Phys. Rev. Lett. 122 (2019) 053002-1.
N. L. S. Martin, C. M. Weaver, B. N. Kim et al., Phys. Rev. A 99 (2019) 032708-1.
N. Haram, R. T. Sang and I. V. Litvinyuk, J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 1.
J. Pupeikis, P. A. Chevreuil, N. Bigler et al., Optica. 7 (2020) 168.
D. B. Milošević, Mod. Phys. Lett. B 37 (2023) 2350071.
H. Kang, S. Chen, J. Chen et al., New J. Phys. 23 (2021) 033041.
S. Xing-Chen, L. Yang, C. Qi et al., Acta Phys. Sin. 71 (2022) 233202.
K. Amini, A. Chacón, S. Eckart et al., Eur. Phys. J. D 75 (2021) 274.
S. Fritzsche and B. Böning, Phys. Rev. Res. 4 (2022) 033031.
B. Böning and S. Fritzsche, Phys. Rev. A 106 (2022) 043102.
J. Maurer and U. Keller, J. Phys. B: At. Mol. Opt. Phys. 54 (2021) 1.
C. T. Plowman, I. B. Abdurakhmanov, I. Bray et al., Eur. Phys. J. D 76 (2022) 1.
D. F. Dar and S. Fritzsche, At. 11 (2023) 1.
G. G. Cruz and Y. G. Gurevich, J. Appl. Phys. 80 (1996) 1726.
R. D. Picca, J. M. Randazzo, S. D. López et al., Phys. Rev. A 107 (2023) 053104.
B. N. Kim, Angular Distribution of Electron-Helium Scattering in the Presence of A 1.17 eV Laser Field, Ph.D. Dissertation, University of Kentucky (2022).
D. V. Giri, Mathematics Notes: one Delta Function, Part I: A review of various representations and properties of Dirac delta function, Air Force Weapons Laboratory, United States (1976) 1.
T. Meltzer and J. Tennyson, J. Phys. B: At. Mol. Opt. Phys., 53 (2020) 245203.
A. Cionga, F. Ehlotzky and G. Zloh, Phys. Rev. A 64 (2001) 043401.
A. Makhoute, D. Khalil and I. Ajana, At. 7 (2019) 1.
A. Jablonskia, F. Salvatb and C. J. Powell, J. Phys. Chem. Ref. Data 33 (2004) 409.
S. M. Li, J. Chen and Z. F. Zhou, Eur. Phys. J. D 19 (2002) 157.
DOI: https://doi.org/10.55981/aij.2024.1309
Copyright (c) 2024 Atom Indonesia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.