Monte Carlo Methods to Simulate the Propagation of the Created Atomic/ Nuclear Particles from Underground Piezoelectric Rocks through the Fractures Before the Earthquakes

A. Bahari, S. Mohammadi, N. S. Shakib, M. R. Benam, Z. Sajjadi


Until now, many studies have been performed on particle radiations before or during earthquakes (EQs). Neutron, gamma, electron, proton, and ultra-low frequency (ULF) photons are among the particles, detected during EQs. In our previous study, with the help of piezoelectricity relationships and the elastic energy formula, the Monte Carlo N‐Particle eXtended (MCNPX) simulation code was applied to find the amount of created atomic/nuclear particles, the dominant interactions; and the energy of the particles for various sizes of quartz and granite blocks. In this study, using the MCNPX simulation code, we have estimated the flux of the particles (created from under-stressed granitic rocks) at different distances from the EQ hypocenter inside the fractures, filled with air, water, and CO2. It was found that inside a water-filled fracture, the particles do not show the flux far from the EQ hypocenter. However, inside the gases like air and CO2 with the normal condition density, different types of particles can have a flux far from the source (more than a kilometer) and they might reach themselves to the surface in the case that the EQ hypocenter is very shallow (0­-5 km). However, for deep EQs, it seems that the most detected nuclear particles on the surface should pass via the vacuum-filled fractures and reach the surface. Moreover, it was concluded that the higher the density of the fracture’s filling fluid, the less distance that the particles can have a flux.


MCNP; Granite rocks; Earthquake; Particles radiation; Gamma ray; Neutrons; Runaway electrons

Full Text:



X. Guo, J. Yan and Q.Wang, J. Environ. Radioact. 213 (2020) 106119.

N. Salikhov, A. Shepetov, G. Pak et al., Atmos. 14 (2022) 1667.

C. Tsabaris, J. Radioanal. Nucl. Chem. 330 (2021) 755.

A. U. Maksudov and M. A. Zufarov, Earthquake Sci. 30 (2017) 283.

Y. Stenkin, V. Alekseenko, Z. Cai et al., J. Environ. Radioact. 208-209 (2019) 105981.

P. Picozza, L. Conti and A. Sotgiu, Front. Earth Sci. 9 (2021) 676775.

M. R. M. Daneshvar and F. T. Freund, Swiss J. Geosci. 112 (2019) 435.

A. Carpinteri and G. Niccolini, Sci. 1 (2019) 17.

A. Bahari, S. Mohammadi, M. R. Benam et al., Radiat. Eff. Defects Solids 177 (2022) 743.

D. Mindaleva, M. Uno and N. Tsuchiya, Geophys. Res. Lett. 50 (2023) e2022GL099892.

E. Warren-Smith, B. Fry, L. Wallace et al., Nat. Geosci. 12 (2019) 475.

K.Ujiie, H.Saishu, A. Fagereng et al. Geophys. Res. Lett. 45 (2018) 5371.

J. Nakajima and N. Uchida, Nat. Geosci. 11 (2018) 351.

Y. Mukuhira, M. Uno and K. Yoshida, Commun. Earth Environ. 3 (2022) 286.

J. G. Berryman, Geophys. J. Int. 171 (2007) 954.

J. R. Moore, V. Gischig, M. Katterbach et al., Earth Surf. Processes Landforms 36 (2011) 1985.

I. B. Vodopiyanov, J. R. Dwyer, E. S. Cramer et el., J. Geophys. Res.: Space Phys. 120 (2015) 800.

D. Sarria, C. Rutjes, G. Diniz et al. Geosci. Model Dev. 11 (2018) 4515.

E. M. A. Hussein, Radiation Mechanics, Principles and Practice, 1st ed., Elsevier Science, Oxford (2007) 153.

L. S. Waters, G. W. McKinney, J. W. Durkee et al., AIP Conf. Proc. 896 (2007) 81.

Los Alamos National Laboratory, Monte Carlo Methods, Codes, & Applications Group. Retrieved in March (2023).

S. A. Miller, C. Collettini, L. Chiaraluce et al., Nat. 427 (2004) 724.

Anonymous, Engineering ToolBox, Carbon dioxide - Density and Specific Weight vs. Temperature and Pressure., Retrieved in March (2023).

International Atomic Energy Agency (IAEA), Evaluated Nuclear Data File (ENDF). Retrieved in March (2023).


Copyright (c) 2024 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.