Comparative Analysis of Turbulence Models for Thermal-Hydraulic Simulations in Aqueous Homogeneous Reactors

D. M. Pérez, A. G. Rodríguez, D. E. M. Lorenzo, C. A. B. de Oliveira Lira


This article presents a comparative study of various turbulence models applied in the context of thermal-hydraulic simulations for liquid fuel reactors, specifically Aqueous Homogeneous Reactors (AHR) using Computational Fluid Dynamics. The objective was to assess the suitability of the turbulence models by comparing their results with data obtained from Large Eddy Simulation (LES). For that purpose, was compared the flow behavior predicted using the k-ε, SST, GEKO, DES, SBES, and LES turbulence models. The calculations were carried out in a simplified computational model derived from a pre-existing three-dimensional AHR conceptual design. By utilizing this simplified model, the study aimed to focus on the computational differences between the turbulence models, while minimizing the influence of other factors. The calculation results revealed that the k-ε model exhibited significant discrepancies with the LES, with relative differences for the fuel solution maximum temperature reaching up to 75 %. Among the remaining RANS models, the Shear Stress Transport (SST) model demonstrated the best compromise between accuracy and computational efficiency, with differences below 5 % and requiring only 1/5th of the time, compared to the LES model.  The Scale-Resolving Simulation (SRS) models,DES and SBES, provided a more comprehensive description of flow behavior and results closer to LES, albeit with higher computational demands. Between these two models, only the DES model exhibited relative differences below or equal to     1 % compared to the LES model for the studied thermohydraulic parameters.


Aqueous homogeneous reactors; Turbulence models; Reynolds-Averaged Navier-Stokes (RANS); Scale-Resolving Simulation (SRS)

Full Text:



IAEA, Homogeneous Aqueous Solution Nuclear Reactors for the Production of Mo-99 and Other Short Lived Radioistotopes, Vienna, 2008.

National Academies of Sciences Engineering and Medicine, Opportunities and Approaches for Supplying Molybdenum-99 and Associated Medical Isotopes to Global Markets, Proceedings of a Symposium, National Academies Press, Washington, DC (2018).

G. Piefer, K. M. Pitas, E. N. V. Abel et al., Mo-99 Production using a Subcritical Assembly, 1st Annual Molybdenum-99 Topical Meeting, Santa Fe, New Mexico, 2011.

N. Williams, Milwaukee Bus. J. (2018).

M. I. Farezza W and Syarip, J. Phys.: Conf. Ser. 1090 (2018) 012013.

F. Yassar, A. W. Harto and Syarip, J. Phys.: Conf. Ser. 1080 (2018) 012021.

Syarip, M. Rosyid, Dewita et al., J. Phys.: Conf. Ser. 1280 (2019) 022070.

G. Abrar, Sihana and Syarip, Nucl. Eng. Des. 383 (2021) 111428.

M. E. Tano and P. Rubiolo, Energies 15 (2022) 6861.

N. R. Brown, D. J. Diamond, S. Bajorek et al., Nucl. Technol. 206 (2020) 322.

ANSYS, Ansys CFX-Solver Theory Guide, ANSYS, Inc., 2023.

A. Dewan, Tackling Turbulent Flows in Engineering, Springer-Verlag, Berlin Heidelberg (2011).

S. N. A Yusof, Y. Asako, N. A. C. Sidik et al., CFD Lett. 12 (2020) 83.

R. Ji, P.J. Wenig, S. Kelm et al., Ann. Nucl. Energy 181 (2023) 109563.

H. Ju, H. Yu, M. Wang et al., Ann. Nucl. Energy 161 (2021) 108474.

A. Fregni, D. Angeli, A. Cimarelli et al., Nucl. Eng. Des. 389 (2022) 111597.

J. Feng, M. Acton, E. Baglietto et al., Ann. Nucl. Energy 140 (2020) 107298.

A. Laureau, A. Bellè, M. Allibert et al., Ann. Nucl. Energy 177 (2022) 109265.

Y. Wang, M. Wang, J. Zhang et al., Ann. Nucl. Energy 159 (2021) 108347.

A. S. Iskhakov, N. T. Dinh, V. C. Leite et al., Prog. Nucl. Energy 163 (2023) 104809.

E. M. J. Komen, A. Mathur, F. Roelofs et al., Nucl. Eng. Des. 401 (2023) 112082.

Y. Bartosiewicz, Nucl. Eng. Des. 382 (2021) 111362.

S. Yang, U. Bieder, E. Studer, Nucl. Eng. Des. 414 (2023) 112543.

O. Bovati and Y. Hassan, Nucl. Eng. Des. 414 (2023) 112587.

D. M. Pérez, A. G. Rodríguez, L. H. Pardo et al., Int. J. Thermodyn. 24 (2021) 125.

D. M. Pérez, D. M. Pérez, L. H. Pardo et al., Int. J. Thermodyn. 24 (2021) 9.

ANSYS, Best Practice: Scale-Resolving Simulations in Ansys CFD, 2021.

F. R. Menter, R. Sechner, A. Matyushenko, Best Practice: RANS Turbulence Modeling in Ansys CFD, St. Petersburg, 2021.

G. Haller, J. Fluid Mech. 525 (2005) 1.


Copyright (c) 2023 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.