Fluka Monte Carlo for Validating Low-Energy Neutron Capture Therapy Tissue with Boron and Gadolinium

T. E. Bakolia, A. Didi, R. Sebihi, K. Adambounou, E. Hazou

Abstract


Research Gap: Neutron Capture Therapy (NCT) represents a cutting-edge neutron-therapy technique for tumor treatment, but there is a gap in understanding the optimization of neutron dose deposition in tumor cells, particularly in tissues enriched with boron and gadolinium. Research Objective: This study aims to evaluate the dose deposited by thermal neutrons in adipose tissues enriched with boron and gadolinium, utilizing the Monte Carlo Fluka code. Research Methodology: The research employs Fluka, an open source Monte Carlo simulations to assess thermal neutron dose deposition in tissues. The focus is on boron and gadolinium-enriched tissues to understand their impact on neutron dose optimization. Results: Findings affirm the advantages of boron and gadolinium in enhancing neutron dose deposition within tissues. Fluka simulations demonstrate the strategic utilization of neutron properties, showcasing the potential for improved tumor management. The study highlights gadolinium's attractiveness, suggesting its promising application in clinical settings.

Keywords


dose, decay, boron, gadolinium, thermal

Full Text:

PDF

References


W. S. Kiger III, S. Sakamoto and O. K. Harling, Nucl. Sci. Eng. 131 (1999) 1.

L. Gagetti, M. S. Anzorena, A. Bertolo et al., Nucl. Instrum. Methods. Phys. Res., Sect. A. 874 (2017) 28.

D. Santos D. Dauvergne, R. Delorme et al., Capture Therapies Accelerator Based Neutron Capture Therapies (AB-NCT). Cancer Research Forum Rhône Alpes Auvergne, Villeurbanne (2016).

V. Aleynik, A. Burdakov, V. Davydenko et al., Appl. Radiat. Isot. 69 (2011) 1635.

V. N. Kononov, M. V. Bohovko, O. E. Kononov et al., Neutron Therapy Facility Based on High Current Proton Accelerator KG-2,5., Proceedings of RuPAC, Novosibirsk, Russia. (2006) 119.

C. N. Culbertson, M. C. Scott, S. Green, Energy Calibration of the 3 MV Dynamitron Accelerator at the University of Birmingham, Proceedings of International Workshop on Neutron Capture Therapy: State of the Art, Pisa Univesity Press (2004) 185.

T. Kobayashi, G. Bengua, K. Tanaka et al., Radiat. Meas. 46 (2011) 2000.

G. Ceballos, P. R. Ehrlich, A. D. Barnosky et al., Sci. Adv. 1 (2015) 1.

T. Yamamoto, K. Nakai, T. Nariai et al., Appl. Radiat. Isot. 69 (2011) 1817.

A. Burlon, S. Girola, A. A. Valda et al., Appl. Radiat. Isot. 69 (2011) 1688.

V. Vlachoudis, FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proceedings International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009) 1.

International Atomic Energy Agency (IAEA), Current Status of Neutron Capture Therapy. IAEA-TECDOC-1223, Vienna (2001).

J. P. Pignol, J. C. Abbé, J. Sahel et al., J. Chim. Phys. 91 (2017) 1243.

B. T. Essakpa, R. Sebihia, A. Didi et al., Physics AUC 32 (2022) 9.




DOI: https://doi.org/10.55981/aij.2024.1380



Copyright (c) 2024 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.