Non-Dimensional Number Analysis on Natural Circulation Flow Changes Inside Straight-Pipe Heat Exchanger of Water Cooling Tank in FASSIP-02 Test Loop

E. P. Arista, D Deendarlianto, A. S. Al-amin, P. H. Setiawan, H. A. Gunawan, M. Juarsa

Abstract


The FASSIP-02 test loop is a large-scale experimental facility that investigates natural circulation flow rate phenomena to improve passive safety systems of nuclear reactors. Heat transfer in the piping system will result in pattern and magnitude of the natural circulation flow being formed, so it is essential to investigate the heat dissipation capabilities, which will later be applied in nuclear passive cooling systems. The heat transfer behavior of passive cooling systems in large-scale facilities can be quantified with non-dimensional numbers. This research analyzes heat transfer in a straight heat exchanger by comparing non-dimensional numbers based on the Dittus-Boetler and McAdams correlation with the correlation generated from experimental data. The analysis results show that the predicted McAdams correlation with the experimental correlation is higher than 83 %. Meanwhile, Dittus Boetler's correlation prediction with the experimental correlation is smaller than 71 %. The dominance of momentum diffusivity in the cooling process shows the characteristics of thermal behavior with the Prandtl number. In addition, all-natural circulation flow variations occur in a turbulent flow regime that increases with increasing water temperature in the heating tank.

Keywords


FASSIP-02; Non-dimensional; Straight-pipe; Natural circulation; Passive safety

Full Text:

PDF

References


M. Aoki and G. Rothwell, Energy Policy 53 (2013) 240.

P. K. Vijayan, M. H. Bade, D. Saha et al., A Generalized Correlation for the Steady State Flow in Single-Phase Natural Circulation Loops, Bhabha Atomic Research Centre, Mumbai (2000) 1.

M. Juarsa, J. H. Purba, M. H. Kusuma et al., Atom Indones. 40 (2014) 141.

M. Misale, P. Garibaldi, J. C. Passos et al., Exp. Therm Fluid Sci. 31 (2007) 1111.

IAEA, Natural Circulation Data and Methods for Advanced Water Cooled Nuclear Power Plant Designs, International Atomic Energy Agency, Vienna (2002) 1.

E. Krepper and M. Beyer, Nucl. Eng. Des. 240 (2010) 3170.

A. R. Antariksawan, S. Widodo, M. Juarsa et al., Atom Indones. 45 (2019) 17.

D. Lu, Y. Zhang, X. Fu et al., Ann. Nucl. Energy 98 (2016) 226.

K. Il Ahn, Y. H. Jung, J. U. Shin et al., Ann. Nucl. Energy 113 (2018) 353.

T. Yonomoto, Y. Kukita and R. R. Schultz, Nucl. Technol. 124 (1998) 18.

N. M. Ahmed, P. Gao and S. Bello, IOP Conf. Ser.: Earth Environ. Sci. 467 (2020) 012077.

Y. Zhang, Y. Yuan, L. Feng et al., Appl. Therm. Eng. 159 (2019) 113876.

M. Gui, Q. Bi, G. Zhu et al., Nucl. Eng. Des. 346 (2019) 220.

Y. Zhang, Q. Yu, X. Zhang et al., Prog. Nucl. Energy 151 (2022) 104331.

W. C. Williams, Int. J. Heat Mass Transfer 54 (2011) 1682.

Harmen, W. Adriansyah, Abdurrachim et al., AIP Conf. Proc. 1984 (2018) 020011-1.

R. M. Young and E. Pfender, Plasma Chem. Plasma Process. 7 (1987) 211.

W. Chen, X. Fang, Y. Xu et al., Ann. Nucl. Energy 76 (2015) 451.

M. Dostál, K. Petera and S. Solnař, EPJ Web Conf. 269 (2022) 01009.

Y. Zhang, D. Lu, Z. Du et al., Ann. Nucl. Energy 83 (2015) 147.

S. M. Ammar and C. W. Park, Int. Commun. Heat Mass Transfer 118 (2020) 104819.

B. S. Petukhov, Adv. Heat Transfer 6 (1970) 503.

K. H. Kang and S. H. Chang, Int. J. Heat Mass Transfer 52 (2009) 4946.

F. W. Dittus and L. M. K. Boelter, Int. Commun. Heat Mass Transfer 12 (1985) 3.

M. Juarsa, A. R. Antariksawan, S. Widodo et al., AIP Conf. Proc. 2001 (2018) 050005-1.

A. Rosidi, M. Juarsa, D. Haryanto et al., POROS 16 (2018) 7.

M. Juarsa, J. P. Witoko, Giarno et al., Atom Indones. 44 (2018) 123.

X. Wang, C. Shen, L. Liu et al., Ann. Nucl. Energy 181 (2023) 109542.

M. Juarsa, A. R. Antariksawan, M. H. Kusuma et al., IOP Conf. Ser.: Earth Environ. Sci. 105 (2018) 012091-1.

A. A. Shevaladze, P. H. Setiawan, Giarno et al., Indones. J. Nucl. Sci. Technol. 23 (2022) 14.

H. Cheng, H. Lei and C. Dai, Energy Procedia 142 (2017) 3926.

V. Uruba, AIP Conf. Proc. 2118 (2019) 020003-1.

R. Tian, X. Dai, D. Wang et al., J. Therm. Sci. 27 (2018) 213.

R. H. S. Winterton, Int. J. Heat Mass Transfer 41 (1997) 809.




DOI: https://doi.org/10.55981/aij.2024.1387



Copyright (c) 2024 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.