The Modelling and Analysis of iPWR-Type SMR Core Dynamics: Control Rods, Reactivity Feedback, and Thermal-Hydraulic Effects

G. Septawijaya, S. Sukarman, S. Bakhri, M. Subekti

Abstract


Development plans for Nuclear Power Plants (NPPs) in Indonesia have been widely discussed. One of the planned NPP types is the Small Modular Reactor (SMR). Human resource readiness is an essential aspect to be considered before constructing an NPP. Simulators capable of illustrating core dynamics can be used to educate the public about the processes within a nuclear reactor. Core modeling is a key component in developing an NPP simulator. The neutronic behavior of the reactor core is modeled using point kinetics equations, while the thermal-hydraulic aspect uses Mann’s model. The results indicate that the modeled core can operate up to 160 MWt and other operating parameters at maximum power align well with the SMR reactor design certification data.

Keywords


Neutronic; Thermal hydraulic; Small Modular Reactor core

Full Text:

PDF

References


T. Murakami, V. Anbumozhi, Small Modular Reactor (SMR) Deployment: Advantages and Opportunities for ASEAN, ERIA (2022).

Dewan Energi Nasional (DEN) (2024). (in Indonesian). https://www.den.go.id/berita/ pltn-pertama-indonesia-ditargetkan-beroperasi-tahun-2032. Retrieved in June (2024)

C. Zeliang, Y. Mi, A. Tokuhiro et al., Energies 13 (2020) 1.

D. Ingersoll and M. Carelli, Handbook: Fundamental of Small Modular Nuclear Reactors, Elsevier (2020).

Nuryanti, Suparman, M. Nasrullah et al., Jurnal Pengembangan Eneri Nuklir 17 (2015) 133. (in Indonesian)

International Atomic Energy Agency (IAEA), Classification, Selection and Use of Nuclear Power Plant Simulators for Education and Training, TECDOC 1887, Vienna (2019).

C. Blackett, M. H. R. Eitrheim, R. Mcdonald et al., Human Performance in Operation of Small Modular Reactors, Honolulu (2022).

H. Ardiansyah and M. R. Oktavian, Atom Indones. 47 (2021) 85.

Blackett, Human Factors and Simulation, in: Proceeding of the 14th International Conference of Applied Human Factor and Economics (AHFE), San Francisco, USA (2023).

B. Poudel, K. Joshi, R. Gokaraju, IEEE Trans. Energy Convers. 35 (2020) 977.

J. Al-Zain, O. El Hajjaji, T. El Bardouni et al., Moscow Univ. Phys. Bull. 77 (2022) 922.

S. E. Arda and K. E. Holbert, Prog. Nucl. Energy 91 (2016) 116.

NuScale, Part 02 - Final Safety Analysis Report (Rev. 5) - Part 02 - Tier 02 - Chapter 04 - Reactor - Sections 04.01 - 04.06 (2020).

P. Suk, O. Chvála, G.I. Maldonado et al., Nucl. Eng. Des. 371 (2021) 110956.

Y. Oka, K. Suzuki, Nuclear Reactor Kinetics and Plant Control, Tokyo (2013).

J. Malec, D. Toškan, L. Snoj, Ann. Nucl. Energy 146 (2020) 107630.

I. Mahfudin, A. Abimanyu, Syarip, Ganendra 23 (2020) 47. (in Indonesian)

W. M. Stacey, Nuclear Reactor Physics, Second Edition, Willey-VCH, Atlanta (2007).

A. J. Arul, K. Obaidurrahman, R. R. Prasad et al., Phys. Nucl. React. (2021) 373.

M. S. Rahman, M. A. M. Soner, M. M. Rahman et al., Ann. Nucl. Energy 124 (2019) 533.

K. Frick and S. Bragg-Sitton, Nucl. Technol. 207 (2021) 521.

A. R. M. Iasir and K. D. Hammond, J. Appl Phys 131 (2022) 025105.

K. K. Abdulraheem, S. A. Korolev, Z. Laidani, Ann. Nucl. Energy 156 (2021) 108193.

K. K. Abdulraheem and S. A. Korolev, Ann. Nucl. Energy 158 (2021) 108288.

N. E. Todreas, M. S. Kazimi, Nuclear System: Thermal Hydraulic Fundamentals 1 (2011).

B. Puchalski, T. A. Rutkowski, K. Duzinkiewicz, Nucl. Eng. Des.322 (2017) 444.

M. El-Sefy, M. Ezzeldin, W. El-Dakhakhni et al., Nucl. Eng. Technol. 51 (2019) 1540.

M. Reymond, J. Sercombe, L. Gallais et al., J. Nucl. Mater. 557 (2021) 153220.

Z. Rahnama and G. R. Ansarifar, Ann. Nucl. Energy 161 (2021) 108375




DOI: https://doi.org/10.55981/aij.2024.1414



Copyright (c) 2024 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.