The Impact of Different Light-Reflecting Materials Compositions of (LaBr3:Ce) Scintillation Detector on Spent Nuclear Fuel Gamma Spectrum

R. A. El-Tayebany

Abstract


The Scintillation detectors are extensively employed in nuclear safeguards, nuclear security fields, radioactive material testing, and physics research. Light-reflecting materials of (LaBr3:Ce) scintillation detectors positively affect their ability to capture light. Our goal is to investigate the characteristics of various reflectors by MCNPX code. In this paper, high-activity fission products from the spent fuel, identified as the utilized radionuclides 152Eu, 154Eu, 134Cs, 137Cs, and 243Cm, have been used in the simulation. Also, short-lived fission products, and short-lived actinides (239U and 239Np), which have decay heat in the timeframe of severe accident analysis, have been included. The findings of this investigation are consistent with the discovery that LaBr3:Ce delivers superior resolution. Additionally, some closely spaced peaks in the spectra of numerous radioisotopes could be resolved by the LaBr3:Ce detector. With different energy lines, the spectral responses of the scintillators' various reflectors were evaluated.

Keywords


MCNPX, LaBr3(Ce) scintillators; Absolute efficiency; Light-reflecting materials; Gamma-ray

Full Text:

PDF

References


H. Syaeful, I.G. Sukadana et al., Atom Indones. 40 (2014) 33.

S. G. Crystal, Scintillation Products Technical Note: BrilLanCeTM Scintillators Performance Summary, Saint-Gobain Crystal, Ohio (2016).

K. Ciupek, S. Jednoróg, M. Fujak et al., J. Radioanal. Nucl. Chem. 299 (2014) 1345.

B. D Milbrath, B. J. Choate, J. E. Fast et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 572 (2007) 774.

B. Löher, D. Savran, E. Fiori et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 686 (2012) 1.

A. Dreschera , M. Yohoa, S. Landsbergera et al., Development of LaBr3:Ce Scintillation Detectors for a Gamma-Gamma Coincidence System with Applications in Spent Nuclear Fuel, The University of Texas at Austin Nuclear Engineering Teaching Laboratory Pickle Research Campus R-9000 Austin, TX 78712, USA (2016).

J. Navarro, T. A. Ring and D. W. Nigg, Nucl. Data Sheets 118 (2014) 571.

A. Y. Vorob’ev, V. A. Petrov, V. E. Titov et al., Thermophysical Properties of Materials, 45 (2007) 19.

V. A. Baranov, V. V. Filchenkov, A. D. Konin et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 374 (1996) 335.

P. S. Sokolov, D. A. Komissarenko, S. K. Belus et al., Opt. Mater. 108 (2020) 110393.

N. Uchida, H. Takahashi, M. Ohno et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 986 (2021) 164725.

M. Janecek and W. W. Moses, IEEE Trans. Nucl. Sci. 55 (2008) 2432.

L. Stuhl, A. Krasznahorkay, M. Csatlós et al., J. Phys. Conf. Ser. 665 (2016) 012050.

F. C Dias, M. S. Grund, G. Renha Jr. et al., The Use of Lanthanum Bromide Detectors for Nuclear Safeguards Applications, International Nuclear Atlantic Conference (2009).

D. Reily, N. Ensslin, H. Jr. Smith et al., Passive Nondestructive Assay of Nuclear Materials, NUREG/CR-5550, US-NRC (1991).

M. Tarvainen, F. Levai, T. E. Valintine et al., NDA Techniques for Spent Fuel Verification And Radiation Monitoring, Report on Activities 6a and 6b of Task JNT C799 (SAGOR) Finnish Support Programme to the IAEA Safeguards, STUK-YTO-TR-133 (1997).




DOI: https://doi.org/10.55981/aij.2024.1421



Copyright (c) 2024 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.