Radiation Dose Prediction for Cervical Cancer Patients Using IMRT Technique with a Machine Learning Model Based on Support Vector Regression (SVR)

R. F. Mushaddaq, D. S. K. Sihono, P. Prajitno

Abstract


Cervical cancer poses significant global health challenges, necessitating the need for innovative treatment approaches. This study addresses the gap in current radiotherapy methods by integrating Support Vector Regression (SVR) to predict radiation doses for cervical cancer treatment, thereby enhancing the precision of Intensity Modulated Radiation Therapy (IMRT). Using datasets from 102 and 173 cervical cancer cases, we developed and validated an SVR model to predict dose distributions based on radiomic and dosiomic features. The model demonstrated strong performance, achieving a Mean Absolute Error (MAE) of 0.069 for the testing data, with specific performance metrics as follows: bladder mean dose MAE of 0.0693, bowel mean dose MAE of 0.0926, and rectum mean dose MAE of 0.0779. These findings highlight the potential of machine learning to refine radiotherapy planning, reduce the workload on medical physicists, and improve patient outcomes. Future research should focus on expanding dataset sizes and enhancing model precision, particularly for anatomically challenging regions.

Keywords


Cervical cancer; Support Vector Regression (SVR); Radiotherapy planning; Machine learning; Intensity Modulated Radiation Therapy (IMRT)

Full Text:

PDF

References


G. Zhang, Z. Jiang, J. Zhu et al., Radiat. Oncol. 17 (2022) 1.

Y. Lin, K. Chen, Z. Lu et el., Radiat. Oncol. 13 (2018) 1.

F. Kurniati, F. P. Krisna, Junios et al., Atom Indones. 47 (2021) 205.

I. Ríos, I. Vásquez, E. Cuervo et al., Rep. Pract. Oncol. Radiother. 23 (2018) 517.

C. Jihong, B. Penggang, Z. Xiuchunet et al., Technol. Cancer Res. Treat. 19 (2020) 1.

F. K. Hentihu, A. K. Anto and R.S. Nugroho, Atom Indones. 48 (2022) 9.

A. Abbasian Ardakani, N. J. Bureau, E. J. Ciaccio et al., Comput. Methods Programs Biomed. 215 (2022) 106609.

R. Krishnamurthy, N. Mummudi, J. S. Goda et al., JCO Global Oncol. 8 (2022) 3.

E. Salari, K. S. Xu, N. N. Sperling et al., J. Appl. Clin. Med. Phys. 24 (2023) e13824.

Y. Huang, A. Feng, Y. Lin et al., Radiat. Oncol. 17 (2022) 1.

N. Al Mudawi and A. Alazeb, Sensors 22 (2022) 1.

P. Zhou, X. Li, H. Zhou et al., Front. Oncol. 11 (2021) 1.

L. Xie, R. Chu, K. Wang et al., Front. Oncol. 10 (2020) 1.

X. Zhang, Y. Zhang, G. Zhang et al., Front. Oncol. 12 (2022) 1.

Y. Qin, L. H. Zhu, W. Zhao et al., Front. Oncol. 12 (2022) 1.

M. Tabassum, A. Al Suman, E. S. Molina et al., Cancers 15 (2023) 1.

L. Sun, W. Smith, C. Kirkby, J. Appl. Clin. Med. Phys. 24 (2023) e13904.

Shataee, S. Kalbi, A. Fallah et al., Int. J. Remote Sens. 33 (2012) 6254.

Isnaeni R., Sudarmin and Z. Rais, VARIANSI: J. Stat. Appl. Teach. Res. 4 (2022) 30. (in Indonesian).

K. B. Adam, D. K. Silalahi, B. S. Aprillia et al., J. RESTI 6 (2022) 548. (in Indonesian)

A. W. Ishlah, Sudarno, P. Kartikasari, J. Gaussian 12 (2023) 276. (in Indonesian)

A. N. Safira, B. Warsito, A. Rusgiyono, J. Gaussian 11 (2023) 512. (in Indonesian)

M. K. Uçar, M. Nour, H. Sindi et al., Math. Probl. Eng. 2020 (2020) 1.

International Commission on Radiation Units and Measurements, Prescribing, Recording adnd Reporting Photon Beam Therapy, in: ICRU Report 62, Bruxelles (1999).

International Commission on Radiation Units and Measurements, Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT), in: ICRU Report 83, Oxford University Press, 10 (2010) 1.

P. Tsirikoglou, S. Abraham, F. Contino et al., Appl. Soft Comput. 61 (2017) 139.

M. Jiang, S. Jiang, L. Zhu, Comput. Math. Methods Med. 2013 (2013) 1.

Y. Sun, S. Ding, Z. Zhang et al., Soft Comput. 25 (2021) 5633.

M. Sabzekar, S. M. H. Hasheminejad, Chaos, Solitons Fractals 144 (2021) 110738.




DOI: https://doi.org/10.55981/aij.2024.1483



Copyright (c) 2024 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.