Analysis of Alpha and Lithium-7 Particle Energy Deposition in BNCT using Geant4 Simulation

K. Charef, F. Z. Ahlaf, Y. Khoulaki, D. Benchekroun, H. Harrass, I. Fathi, Y. Makhkhas

Abstract


This study investigates the microdosimetric characteristic of Boron Neutron Capture Therapy (BNCT) using high-fidelity Monte Carlo simulations to quantify the energy deposition distributions of alpha and lithium-7 particles within cellular structures. The Geant4 toolkit is utilized to model various physics lists and water representations, aiming to optimize the accuracy of BNCT simulations. Dosimetric and microdosimetric studies using these Monte Carlo techniques are conducted to examine the behavior of the produced alpha and lithium-7 particles and their energy deposition in different cellular compartments. Our findings contribute to the understanding of BNCT’s effects at the cellular level, which is crucial for advancing treatment planning and minimizing side effects.

Keywords


Boron neutron capture therapy; Lithium-7 ion; Alpha particles; Geant4; Monte Carlo; Radiotherapy

Full Text:

PDF

References


P. Maass, W. Dieterich, F. Scheffler, Nearly Constant Loss Spectra in Glasses: Dipolar Interaction Effects, in: AIP Conf. Proc. 832 (2006) 492.

M. Takagaki, W. Powell, A. Sood et al., Radiat. Res. 156 (2001) 118.

W. Sauerwein, A. Wittig, R. Moss et al., Springer-Verlag Berlin Heidelberg (2012) 1.

J. Coderre and G. Morris, Radiat. Res. 151 (1999) 1.

A. Monti Hughes and N. Hu, Cancers 15 (2023) 4091.

K. Nedunchezhian, N. Aswath, M. Thiruppathy et al., J. Clin. Diagn. Res. 10 (2016) ZE01.

D. Skwierawka, J. López-Valverde, M. Balcerzyk et al., Cancers 14 (2022) 2865.

A. Karaoglu, P. Arce, D. Obradors et al., Appl. Radiat. Isot. 132 (2018) 206.

A. Bahari, S. Mohammadi, N. Shakib et al., Atom Indones. 50 (2024) 27.

M. Ali, A. Abdel Monem, S.K. Elshamndy et al., Atom Indones. 48 (2022) 237.

S. Santosa, K. Khotimah, and H. Yasmine, Atom Indones. 1 (2023) 97.

T. Mukawa, T. Matsumoto, K. Niita, Prog. Nucl. Sci. Technol. 2 (2011) 242.

I. Hrivnácová, and G. Barrand, EPJ Web Conf. 295 (2024) 03006.

T. Bakolia, D. Abdessamad, R. Sebihi et al., Atom Indones. 1 (2024) 37.

S. Agostinelli, J. Allison,K. Amako et al., Nucl. Instrum. Methods Phys. Res. A 506 (2003) 250.

A. Leyva and E. Munévar, Biophys. Rev. 15 (2023) 1.

S. Incerti, M. Douglass, S. Penfold et al., Phys. Med. 32 (2016) 1187.

R. Tesse, F. Stichelbaut, N. Pauly et al., Nucl. Instrum. Methods Phys. Res. B 416 (2018) 68.

W.-G. Shin, J. Ramos-Mendez, N.H. Tran et al., Phys. Med. 88 (2021) 86.

Y. Lu, Z. Xu, L. Zhang et al., Nucl. Instrum. Methods Phys. Res. B 506 (2021) 8.

J. Hopewell, G. Morris, A. Schwint et al. Appl. Radiat. Isot. 69 (2011) 1756.

S. Kaur, K. Singh, Ann. Nucl. Energy 63 (2014) 350.




DOI: https://doi.org/10.55981/aij.2025.1501



Copyright (c) 2025 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.