Comparison of Lung Cancer Lesion Detection Capability on Standard Dose and Low Dose Computed Tomography Capabilities: An In-House Phantom Study

A. K. Hutami, H. D. R. Raharja, L. E. Lubis, D. S. Soejoko

Abstract


The use of Low-Dose Computed Tomography (LDCT) protocols has garnered significant attention, particularly in detecting cancerous lesions in high-risk populations. However, the drawback of low-dose CT protocols results in image noise. Solutions introduced, such as the use of reconstruction techniques, tend to be time-inefficient, complex, and costly. This paper aims to explain the design and construction of an approach for evaluating the quality of lung cancer lesion imaging that is adequate and easily implementable. In this study, a custom-designed in-house phantom is required to simulate lung cancer lesions. The in-house phantom was constructed from organ or tissue-equivalent materials and equipped with various Hounsfield Unit values and lesion diameter sizes, which were determined based on data from 73 patients, consisting of both males and females, using contrast. Scans were performed on the phantom using standard-dose and low-dose protocol parameters. The results demonstrated that the low-dose protocol was able to detect small lesions at lower radiation levels. The contrast difference is quite good with a Signal Difference to Noise Ratio (SDNR) value ≥ 5. The image was optimum with a relatively high Figure of Merit (FOM). Additionally, Noise Power Spectrum (NPS) measurements provided accurate results within a specific range of spatial frequencies.

Keywords


Low-dose computed tomography; Phantom in-house; Signal Difference to Noise Ratio; Figure of Merit; Noise Power Spectrum

Full Text:

PDF

References


WHO, Total #Cancer Cases (2018), 2020. https://www.who.int/publications/m/item/cancer-idn-2020. Retrieved in March 2024

C. McCollough, D. Cody, S. Edyvean et al., Report No. 96, The Measurement, Reporting, and Management of Radiation Dose in CT, American Association of Physicists in Medicine (AAPM), College Park (2008) 1.

R. Meza, J. Jeon, I. Toumazis et al., JAMA 325 (2021) 988.

L. Manuel, L.S. Fong, T. Ly et al., Interact. Cardiovasc. Thorac. Surg. 33 (2021) 741.

C. Goudemant, V. Durieux, B. Grigoriu et al., Rev. Mal. Respir. 38 (2021) 489.

M. Reck, S. Dettmer, H.-U. Kauczor et al., Dtsch. Arztebl. (2023) 387.

H. L. Lancaster, M. A. Heuvelmans, and M. Oudkerk, J. Intern. Med. 292 (2022) 68.

R. M. Hoffman, R. P. Atallah, R. D. Struble et al., J. Gen. Intern. Med. 35 (2020) 3015.

Council NR., Beir VII: Health Risks from Exposure to Low Levels of Ionizing Radiation. https://nap.nationalacademies.org/resource/11340/beir_vii_final.pdf. Retrieved in December 2024.

S. Iranmakani, A. R. Jahanshahi, P. Mehnati et al., J. Med. Signals. Sens. 12 (2022) 64.

G. L. Zeng, J. Radiol. Imaging 4 (2020) 45.

B. Jiang, N. Li, X. Shi et al., Radiol. 303 (2022) 202.

P.G. Mikhael, J. Wohlwend, A. Yala et al., J. Clin. Oncol. 41 (2023) 2191

J. A. Yeom, K. U. Kim, M. Hwang et al., Medicina (Lithuania) 58 (2022) 939.

L. E. Lubis, I. Hariyati, D. Ryangga et al., Atom Indones. 46 (2020) 69.

Y. Niu, S. Huang, H. Zhang et al., Quant. Imaging. Med. Surg. 11 (2021) 380.

J. Greffier, Y. Barbotteau, and F. Gardavaud, Diagn. Interv. Imaging 103 (2022) 555.

J. T. Bushberg, J.A. Siebert, E. M. Leidholdt et al., The Essential Physics of Medical Imaging, Wolters Kluwer Health / Lippincott Williams & Wilkins, Pennsylvania (2012).

J. B. Solomon, X. Li, E. Samei, Am. J. Roentgenol. 200 (2013) 592.

P. J. Mazzone, G. A. Silvestri, L. H. Souter et al., CHEST 160 (2021) e427.

K. Ichikawa, T. Kobayashi, M. Sagawa et al., J. Appl. Clin. Med. Phys. 16 (2015) 1.

M. E. Widiatmoko and S. Ramadanti, Jurnal Kesehatan Vokasional 8 (2023) 174. (in Indonesian)

K. M. Ogden, W. Huda, M. R. Khorasani et al. A Comparison of Three CT Voltage Optimization Strategies, in: Proceedings of SPIE 6913 (2008) 691351-1.

E. Seeram, Computed Tomography: Physical Principles, Clinical Applications, and Quality Control, Saunders, St. Louis (2016).

Priyanka, R. Kadavigere, and S. Sukumar, Clin. Neuroradiol. 34 (2024) 229.

M. Alshipli and N. A. Kabir, J. Phys.: Conf. Ser. 851 (2017) 012005.

J. M. Ford and S. J. Decker, J. Forensic. Radiol. Imaging 4 (2016) 43.

S. C. Bushong, Radiologic Science for Technologists: Physics, Biology, and Protection, Mosby; St. Louis, Missouri (2021).

O. Ekizoglu, E. Inci, E. Hocaoglu et al., J. Craniofac. Surg. 25 (2014) 957.

J. Wu, R. Li, H. Zhang et al., Thorac. Cancer 15 (2024) 1522.

H. D. R. Raharja, D. Putra, A. Naufal et al., Noise Power Spectrum (NPS) Characteristics on CT Imaging: Slice Thickness and Filter Types Variations, in: Proceedings of the 21st South-East Asian Congress of Medical Physics (SEACOMP) and 6th Annual Scientific Meeting on Medical Physics And Biophysics (PIT-FMB), AIP Publising (2024) 030014.

J. Choe, S. M. Lee, K. H. Do et al. Radiology 292 (2019)

H. Lang, J. Neubauer, B. Fritz et al., Eur. Radiol. 26 (2016) 4551.

M. Chillarón, V. Vidal, and G. Verdú, PLoS One 15 (2020) e0229113.

P. Monnin, A. Viry, F. R. Verdun et al., Phys. Med. Biol. 65 (2020) 105009.

M. Afadzi, E. K. Lysvik, H. K. Andersen et al., Eur. J. Radiol. 114 (2019) 62.

J. Gariani, S. P. Martin, D. Botsikas et al., Br. J. Radiol. 91 (2018) 20170443.

T. Kubo, Y. Ohno, M. Nishino et al., Eur. J. Radiol. Open 3 (2016) 86.

A. Ruano-Ravina, M. Pérez-Ríos, P. Casàn-Clará et al., Lancet Oncol. 19 (2018) e131.

H. Shen, Front. Med. 12 (2018) 116.

S. Park, J. H. Yoon, I. Joo et al., Eur. Radiol. 32 (2022) 2865.




DOI: https://doi.org/10.55981/aij.2025.1587



Copyright (c) 2025 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.