PHITS-Based Simulation of Dose Distributions and Secondary Particle Fluence from Light and Heavy Ions at Therapeutic Energies in a Water Phantom

C. G. M. Dalumpines, G. F. I. Peñonal, H. P. Aringa, V. C. Convicto

Abstract


Comprehensive dosimetric evaluation of light and heavy ions such as protons, alpha particles, carbon, and oxygen ions is essential for advancements in radiation therapy and space applications. This study employed the Particle and Heavy Ion Transport code System (PHITS) to simulate dose distributions and secondary particle fluence in a water phantom across a range of therapeutic ion energies. A 30 × 30 × 30 cm³ water phantom with 2.0 × 108 primary particles at a Source to Surface Distance (SSD) of 100 cm were irradiated using mono energetic axial source. This simulation study also evaluated particle fluence of secondary particles such as electrons, positrons, and neutrons. Results showed that positron fluence concentrates around the water phantom, dispersing more at higher energy, while neutron flux focuses along the source path. The PHITS generated Percent Depth Dose (PDD) curves illustrate varied dose deposition patterns for each ion at different energies. For the highest energy considered, the simulated Bragg peak positions deviated by not more than 4.55 % from the experimental data, with simulation uncertainties kept below 0.1 %, ensuring accurate dose analysis. Helium ions (alpha particles) exhibited favorable treatment characteristics such as lower entrance dose, minimal lateral scattering, and reduced fragmentation consistent with the experimental findings. Additionally, the spatial distributions of electrons, positrons, and neutrons show elevated concentrations near the water phantom, indicating potential benefits for enhancing treatment precision.

Keywords


Cancer, Heavy Ions, Fluence, PDD, PHITS

Full Text:

PDF

References


M. C. Frese, K. Y. Victor, R. D. Stewart et al., Int. J. Radiat. Oncol. Biol. Phys. 83 (2012) 442.

Y. Zhang, P. Trnkova, T. Toshito et al., Phys. Imaging Radiat. Oncol. 26 (2023) 100439.

J. Xu, M. Song, Z. Fang et al., J. Controlled Release 353 (2023) 699.

K. Parodi, A. Mairani, S. Brons et al., Phys. Med. Biol. 57 (2012) 3759.

F. Padilla-Cabal, M. Pérez-Liva, E. Lara et al., J. Radiother. Prac. 14 (2015) 311.

H. Zaidi and P. Andreo, Monte Carlo Calculations in Nuclear Medicine, 2nd ed, IOP Publishing, 2022.

D. Sheikh-Bagheri and D. W. O. Rogers, Med. Phys. 29 (2002) 391.

M. K. Fix, P. J. Keall, K. Dawson et al., Med. Phys. 31 (2004) 3106.

O. E. Durán-Nava, E. Torres-Garcı́a, R. Oros-Pantoja et al., J. Phys.: Conf. Ser. (2019) 012079.

B. T. Hung, T. T. Duong, and B. N. Ha, Atom Indones. 49 (2023) 13.

R. Sapundani, R. Ekawati, and K. M. Wibowo, Atom Indones. 47 (2021) 199.

F. Kurniati, F. P. Krisna, J. Junios et al., Atom Indones. 47 (2021) 205.

T. Tessonnier, A. Mairani, S. Brons et al., Phys. Med. Biol. 62 (2017) 3958.

D. Schulz-Ertner and H. Tsujii, J. Clin. Oncol. 25 (2007) 953.

O. Jakel, State of the Art in Hadron Therapy, in: AIP Conference Proceedings, 958 (2007) 70.

T. Sato, K. Niita, N. Matsuda et al., Overview of Particle and Heavy Ion Transport Code System PHITS, in: Proceedings of SNA + MC 2013 - Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo (2014) 06018.

T. Sato, Y. Iwamoto, S. Hashimoto et al., J. Nucl. Sci. and Technol. 55 (2018) 684.

M. Puchalska and L. Sihver, Phys. Med. Biol. 60 (2015) N261.

D. R. Pamisa, V. Convicto, A. Lintasan et al., J. Phys.: Conf. Ser. 1505, (2020) 012010.

V. Convicto, D. R. Pamisa, A. Lintasan et al., J. Phys.: Conf. Ser. 1505 (2020) 012009.




DOI: https://doi.org/10.55981/aij.2025.1643



Copyright (c) 2025 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.