Scanning Horn Simulation Code for Electron Beam Machine Based on Boris Algorithm

A. H. Shali, S Saminto, S. R. Adabiah, F. Lucyana, T Taufik

Abstract


A numerical particle simulation code package to estimate the irradiation distribution of an electron beam machine is presented. Particle-to-particle interactions are calculated using particle-in-cell method, while the equation of motion is solved using Boris algorithm. The amplitude of oscillating magnetic field distribution from the scanning horn is obtained using CST magnetic field solver. The code was run using Intel’s i7-10700 processor without multithreading. For cases where particle-to-particle interactions are negligible, the simulation requires about 10 000 seconds to finish. The results show that different shapes of signals will result in different irradiation distributions. For a relatively low magnetic oscillation frequency, it is shown that a triangular signal will result in a more evenly distributed irradiation compared to a sinusoidal signal.

Keywords


Numerical simulation; Scanning horn; Irradiation distribution

Full Text:

PDF

References


Saefurrochman, Darsono, S. R. Adabiah et al., Ganendra 24 (2021) 21. (in Indonesian)

Suprapto, Sudjatmoko, S. Atmodjo et al., Ganendra 6 (2003) 26. (in Indonesian)

S. Sugiarto, D. S. Rahardjo and Sudjatmoko, Prosiding Pertemuan dan Presentasi Ilmiah Teknologi Akselerator dan Aplikasinya 1 (1999) 24. (in Indonesian)

J. Qiang, R. D. Ryne, S. Habib et al., J. Comput. Phys. 163 (2000) 434.

J. Pitt-Francis and J. Whiteley, Guide to Scientific Computing in C++, 2nd ed., Springer, Oxford (2017) 3.

G. P. Boicourt, AIP Conf. Proc. 177 (1988) 1.

Y. K. Batygin, Nucl. Instrum. Methods Phys. Res., Sect. A 539 (2005) 455.

K. R. Crandall and T. P. Wangler, AIP Conf. Proc. 177 (1988) 22.

J. Huang, Y. Q. Xiong, D. Z. Chen et al., Chin. Phys. C 38 (2014) 107008-1.

P. Bystrov, A. Prokopenko, Y. Pavlov et al., Procedia Comput. Sci. 145 (2018) 123.

H. Qin, S. Zhang, J. Xiao et al., Phys. Plasma 20 (2013) 084503.

S. Zenitani and T. Umeda, Phys. Plasma 25 (2018) 112110.

J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 867 (2017) 15.

Y. Tian, C. Wang, D. Zhu et al., J. Mater. Process. Technol. 199 (2008) 41.

B. Ripperda, F. Bacchini, J. Teunissen et al., Astrophys. J. Suppl. Ser. 235 (2018) 21.

J. Boris, Proceedings of the Fourth Conference on the Numerical Simulation of Plasmas (1970) 3.

J. J. Yang, A. Adelmann, M. Humbel et al., Phys. Rev. Spec. Top. Accel Beams 13 (2010) 064201.

J. M. Dawson, Rev. Mod. Phys. 55 (1983) 403.

T. P. Wangler, RF Linear Accelerators, 2nd ed., Wiley-VCH Verlag GmbH &Co. KGaA (2008) 285.

L. Brieda, Plasma Simulations by Example, CRC Press (2019) 11.




DOI: https://doi.org/10.17146/aij.2022.1186



Copyright (c) 2022 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.