Determination and Distribution Map for Radionuclides in Soil Samples from Different Location by Gamma Spectrometry Using Software Analysis

H. Mansour, L. A. Najam, S. A. Abd El-Azeem


The fundamental goal of the current study is to determine the mean activity concentrations of natural and artificial radionuclides of 226Ra, 232Th, 40K, and 137Cs using gamma spectrometry for three locations, in Egypt, Saudi Arabia, and Iraq, which are significant and vital countries in the Middle East. The mean absorbed dose rate equals 22.35, 28.96, and 43.34 nGy h-1 for Egypt, Saudi Arabia, and Iraq. The results are consistent with international reports. The dose contribution percentages for investigated locations are 24 %, 30 %, and 46 % for Egypt, Saudi Arabia, and Iraq, respectively. The obtained results were clarified by statistical measurements using one-way ANOVA test to determine the distribution and differences between the averages of the three groups under study, as they may be influenced by geological variations and human intervention. It was found that the Iraq samples followed a symmetrical, standard normal distribution, while samples from Egypt and Saudi Arabia did not. Statistically significant differences were found between the data from the three countries.


Natural Radionuclides; Cs-137; one-way ANOVA test; Gamma Spectroscopy

Full Text:



L. Miller, A. I. Apostoaei, M. Howard et al., Encycl. Nucl. Energy 2 (2021) 744.

R. Pourimani and S. Rahimi, Iran. J. Med. Phys. 13 (2016) 269.

M. J. Melgar and M. Á. J. García, Environ. Sci. Pollut. Res. 28 (2021) 52925.

K. F. Majeed, E. Salama, S. A. Elfiki et al., Environ. Earth Sci. 80 (2021) 64.

M. Y. A. Mostafa, N. F. Kadhim, H. Ammer et al., Monit. Assess. 6 (2021) 193.

H. T. Abba, W. M. S. W. Hassan, M. A. Saleh et al., Isot. Environ. Health Stud. 54 (2018) 522.

D. Godfred, F. Augustine, A. Osei et al., Environ. Monit. Assess. 187 (2015) 187.

A. Saleh, A. El-Taher and H. Mansour, MethodsX 5 (2018) 485.

M. N. Akhtar, S. K. Das, S. Yeasmin et al., J. Bangladesh Acad. Sci. 42 (2018) 171.

S. A. Abd El-Azeem and H. Mansour, Arab J. Sci. Eng. 46 (2020) 697.

UNSCEAR, Sources and Effects of Ionizing Radiation, United Nations, New York (2010) 223.

A. N. Laith, A. M. Fouad, H. K. Malik et al., Int. J. Phys. 5 (2017) 53.

A. H. Alomari, M. A. Saleh, S. Hashim et al., Isotopes Environ. Health Stud. 55 (2019) 2011.

R. Ravisankar, J. Chandramohan, A. Chandrasekaran et al., Mar. Pollut. Bull. 97 (2015) 419.

H. T. Abba, W. M. S. W. Hassan, M. A. Saleh et al., Radiat. Phys. Chem. 140 (2017) 167.

Z. Hanusz and J. Tarasińska, Stat. Model Anal 52 (2015) 85.

G. Bassiouni, F. Abdulla, Z. Morsy et al., Arch. Environ. Contam. Toxicol. 62 (2012) 361.

R. Mohammed and R. Ahmed, Environ. Earth Sci. 76 (2017) 1.

M. Karatasli, Nuclear Tech. Radiat. Protec. 33 (2018) 386.

A. Bajoga, N. Alazemi, H. Shams et al, Radiat. Phys. Chem. 137 (2016) 203.

A. Gad, A. Saleh and M. Khalifa, Arabian J. Geosci. 12 (2019) 1.

F. Alshahri and A. El-Taher, Pol. J. Environ. 28 (2019) 1.

A. Y. Ahmad, M. A. Al-Ghouti, I. AlSadig et al., Sci. Rep. (2019) 12196.

L. A. Najam, N. F. Tawfiq and S. A. Younis, Inter. J. Rec. Res. Rev. VIII (2015) 1.

I. Türkekul, C. M. Yeşilkanat, A. Ciriş et al., Isotopes Environ. Health Stud. 54 (2018) 262.


Copyright (c) 2022 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.