Neutronic Parameter Analysis of Plate-Type Fueled TRIGA 2000 Reactor by MCNPX
Abstract
A novel simulation to calculate the neutronic parameters of the TRIGA 2000 reactor using plate-type fuel has been performed. The plate fuel used was produced by the Indonesian Nuclear Industry (PT INUKI) with U3Si2-Al material. Neutronic parameters based on INUKI’s plate-type fuel dimension and the current TRIGA’s configuration were simulated using MCNPX. The simulation was performed by modeling the complete reactor’s configuration on a fresh fuel core state. We obtained the kinetic parameter values from the simulation, i.e., delayed neutron fraction of 8.11×10‑3, a prompt neutron lifetime of 2.0551×10‑4 s, and an average neutron generation time of 1.87×10‑4 s. The excess reactivity of the reactor was 9.02 %Δk/k, while reactivity in the one-stuck-rod state was below ‑0.5 $ with an average value of ‑3.40 %Δk/k (‑4.19 $). The average thermal neutron flux peak occurred at the central irradiation position with the value of 3.0×1013 to 3.1×1013 n/(cm2 s). The reactor has a power peaking factor of 1.379 in the control rod position of 0 % on D3 fuel. The reactor had a negative feedback reactivity coefficient, except for the moderator coefficient. These results suggest that the current configuration of plate-type fuel met the nuclear reactor neutronic safety standards.
Keywords
Full Text:
PDFReferences
BATAN, Buku Putih Utilisasi Reaktor Riset BATAN, BATAN, Jakarta (2016) 6. (in Indonesian)
A. I. Ramadhan, A. Suwono, N. P. Tandian et al., DINAMIKA Jurnal Ilmiah Teknik Mesin 7 (2016) 13. (in Indonesian)
G. A. Mandala, Triga 2000 Bandung Reactor Modification Simulation with Plate Type Fuel, Seminar Nasional VI SDM Teknologi Nuklir Yogyakarta (2010) 769. (in Indonesian)
I. S. Hardiyanti, Riyatun, Suharyana et al., J. Phys. Conf. Ser. 1153 (2019) 012104.
S. Pinem, T. M. Sembiring, T. Surbakti, Int. J. Nucl. Energy Sci. Technol. 12 (2018) 222.
I. S. Hardiyanti, Riyatun, Suharyana et al., Excess Reactivity Calculation in the Full Core of the TRIGA 2000 Bandung Reactor with Plate Type Fuel, Pertemuan dan Presentasi Ilmiah Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir (2018) 233. (in Indonesian)
P. Basuki, P. I. Yazid and Z. Suud, Indones. J. Nucl. Sci. Technol. 15 (2014) 169.
I. S. Hardiyanti, Riyatun, Suharyana et al., IOP Conf. Ser.: Mater. Sci. Eng. 578 (2019) 012094.
T. Matsumoto, J. Nucl. Sci. Technol. 35 (1998) 662.
M. Q. Huda, M. Rahman, M. M. Sarker et al, Ann. Nucl. Energy 31 (2004) 1299.
K. Tiyapun and S. Wetchagarun, J. Phys. Conf. Ser. 860 (2017) 012035.
O. Kabach, A. Chetaine and A. Benchrif, Appl. Radiat. Isot. 150 (2019) 146.
V. I. S. Wardhani, H. P. Rahardjo and R. Tursinah, Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega 21 (2019) 107. (in Indonesian)
M. Subekti, D. Isnaini and E. P. Hastuti, Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega 15 (2013) 67. (in Indonesian)
S. Marguet, The Physics of Nuclear Reactors, Springer, Cham-Gewerbrestasse (2017) 115.
I. H. Bae, M. G. Na, Y. J. Lee et al., Ann. Nucl. Energy 35 (2008) 2200.
B. M. Mweetwa, E. Ampomah-Amoako, E. H. K. Akaho et al., World J. Nucl. Sci. Technol. 8 (2018) 160.
A. Jazbec, L. Snoj and D. Kavšek, Analysis of a Void Reactivity Coefficient of the JSI TRIGA Mark II Reactor, 22nd International Conference Nuclear Energy for New Europe (2013) 606.1.
Anonymous, MCNPX User’s Manual Version 2.6.0 April 2008 LA-CP-07-1473, D. B. Pelowitz (Ed.), Los Alamos National Laboratory, New Mexico (2008) 435.
M. Hassanzadeh and S. A. H. Feghhi, Ann. Nucl. Energy 83 (2015) 322.
R. Henry, I. Tiselj and L. Snoj, Appl. Radiat. Isot. 97 (2015) 140.
M. Mghar, A. Chetaine and A. Darif, Adv. Appl. Phys. 3 (2015) 1.
S. Michálek, J. Haščík and G. Farkas, J. Electr. Eng. 59 (2008) 221.
P. Basuki, A. R. I. Suwarso, A. Sunarya et al., Indones. J. Nucl. Sci. Technol. 16 (2015) 93.
B. Bärs, J. Nucl. Sci. Eng. 30 (1967) 104.
DOI: https://doi.org/10.55981/aij.2023.1199
Copyright (c) 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.