The Quantitative Effect of Noise and Object Diameter on Low-Contrast Detectability of AAPM CT Performance Phantom Images

E. Setiawati, C. Anam, W. Widyasari, G. Dougherty

Abstract


Parameters for determining computed tomography (CT) image quality include noise and low-contrast detectability. Studies on low-contrast detectability using the AAPM CT performance phantom have several limitations, such as the absence of quantitative information on the effect of noise and object size on low-contrast detectability. In this study, the quantitative effect of noise and object diameter on low-contrast detectability were investigated. Images of the American Association of Physicists in Medicine (AAPM) CT performance phantom model 610 were acquired with a tube voltage of 120 kV and tube currents of 50, 100, 150, and 200 mA. The low-contrast section of the AAPM CT performance phantom model 610 has objects with diameters between 2.5 and 7.5 mm. We analysed the mean CT number, noise level, signal-to noise ratio (SNR), and contrast-to-noise ratio (CNR), acquired using MatLab software. The results obtained indicate that noise and object size affect low-contrast detectability. The CNRs increase linearly with increasing of object diameter with R2 of 0.88, 0.67, 0.75, and 0.83 for tube currents of 50, 100, 150 and 200 mA, respectively.


Keywords


Low-contrast detectability; Noise; Object diameter; SNR; CNR

Full Text:

PDF

References


P. Barca, F. Paolicchi, G. Aringhieri et al., PLOS One 16 (2021) 1.

J. Conzelmann, U. Genske, A. Emig et al., Eur. Radiol. 32 (2022) 1267.

C. Anam, H. Sutanto, K. Adi et al., Biomed. Phys. Eng. Express. 6 (2020) 065001.

T. Njølstad, K. Jensen, A. Dybwad et al., Eur. J. Radiol. Open. 9 (2022) 100418.

S. Riyanto, W. S. Budi and C. Anam, Berkala Fisika 22 (2019) 105. (in Indonesian)

S. T. Bache, P. J. Stauduhar, X. Liu et al., J. Appl. Clin. Med. Phys. 18 (2017) 163.

H. R. Choi, R. E. Kim, C. W. Heo et al., Optik 168 (2018) 54.

K. Gulliksrud, C. Stokke and A. C. T. Martinsen, Phys. Med. 30 (2014) 521.

C. Anam, W. S. Budi, F. Haryanto et al., Sci. Vis. 11 (2019) 56.

Y. He, L. Zeng, W. Yu et al., Med. Biol. Eng. Comput. 58 (2020) 2621.

F. van Ommen, F. Kauw, E. Bennink et al., Acad. Radiol. 28 (2021) e323.

H. A. Alsleem and H. M. Almohiy, Med. Sci. 8 (2020) 26.

H. Li, S. Dolly, H. C. Chen et al., J. Appl. Clin. Med. Phys. 17 (2016) 377.

Z. Mansour, A. Mokhtar, A. Sarhan et al., Egypt. J. Radiol. Nucl. Med. 47 (2016) 1665.

H. J. Park, S. E. Jung, Y. J. Lee et al., Korean J. Radiol. 10 (2009) 490.

S. S. Noh, H. S. Um and H. C. Kim, J. Inst. Electron. Inf. Eng. 51 (2014) 163.

R. Rozanah, W. Setiabudi and Z. Arifin, Youngster Physics Journal 4 (2015) 117. (in Indonesian)

CIRS, AAPM CT Performance Phantom Model 610: User Guide. CIRS Inc, USA (2012).

L. Bellesi, R. Wyttenbach, D. Gaudino et al., Eur. Radiol. Exp. 1 (2017) 1.

L. Yu, B. Chen, J. M. Kofler et al., Med. Phys. 44 (2017) 3990.

Y. Zhou, J. Appl. Clin. Med. Phys. 21 (2020) 128.

Y. Zhou, A. Scott II, J. Allahverdian et al., Phys. Med. Biol. 60 (2015) 7671.

S. T. Bache, P. J. Stauduhar, X. Liu et al., J. Appl. Clin. Med. Phys. 18 (2017) 163.

M. Chacko and S. Aldoohan, Med. Phys. 43 (2016) 3396.

C. Anam, A. Naufal, T. Fujibuchi et al., J. Appl. Clin. Med. Phys. 23 (2022) e13719.

C. Anam, I. Arif, F. Haryanto et al., J. Biomed. Phys. Eng. 11 (2021) 163.

I. Suyudi, C. Anam, H. Sutanto et al., J. Biomed. Phys. Eng. 10 (2020) 215.

A. Mokhtar, Z. A. Aabdelbary, A. Sarhan et al., J. Radiol. Nucl. Med. 52 (2021) 269




DOI: https://doi.org/10.55981/aij.2023.1228



Copyright (c) 2023

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.