Atmospheric Nitrogen Plasma-Induced for Embedding NH2@Cubic-Bicontinuous Mesoporous Silica as Uranium (VI) Adsorbent Candidate in Seawater

N. S. Pamungkas, D. Wongsawaeng, D. Swantomo, K. Kamonsuangkasem, S. Chio-Srichan

Abstract


This work aims to achieve interesting progress in uranium extraction by introducing a promising strategy that utilizes atmospheric nitrogen plasma-induced amine modification of CBC (Cubic Bi-continuous) material, providing a compelling pathway to enhance CBC's adsorption properties specifically for uranium harvesting. CBCs mesoporous silica samples were prepared by mixing the Pluronic F-127 as a template and TEOS (Tetraethyl Orthosilicate) as silica sources in the sol-gel process under acidic conditions. The obtained CBCs were treated using nitrogen plasma at room temperature (RT) under atmospheric pressure in a customized-borosilicate plasma reactor. Subsequently, the treated CBSs were grafted with amine groups. The final samples were characterized using SAXS (Small Angle Synchrotron X-ray Scattering) to determine the phase and structure, SEM-EDS (Scanning Electron Microscopy-Energy Dispersive Spectroscopy) analysis to quantify the presence of silica, oxygen, and embedded nitrogen, and Specific Surface Area (SSA) Analyzer using Brunauer-Emmett-Teller (BET) method to determine the specific surface area and pore size distribution. The SAXS profiles indicate that the obtained samples can be classified as CBCs Im3m mesoporous silica. The presence of silica, oxygen, and nitrogen was verified through SEM-EDS analysis, with approximate compositions of 36-37 %, 51-62 %, and 0.7-1.0 %, respectively. The use of SSA analysis further supported the findings, confirming the typical adsorption isotherm IV model. The specific surface areas were measured to be 371 m2/g for pure CBC, 573 m2/g for P1-CBC, and 607 m2/g for P2-CBC. The pore size distribution analysis revealed mesoporous characteristics within the material, with pore sizes ranging from 4 to 6.5 nm. On a batch laboratory scale, the material achieved the highest adsorption capacity of 15.68 mg-U(VI)/g-NH2@P1-CBC from natural seawater after 1 hour of contact time.

Keywords


Nitrogen plasma; Cubic bi-continuous; Mesoporous silica; Amine-modified; Uranium; Adsorption

Full Text:

PDF

References


T. P. Gandhi, P. V. Sampath and S. M. Maliyekkal, Sci. Total Environ. 825 (2022) 153947.

V. Ratnitsai, W. Wongjaikham, D. Wongsawaeng et al., J. Nucl. Sci. Technol. 59 (2022) 629.

W. Wongjaikham, D. Wongsawaeng and P. Hosemann, J. Nucl. Sci. Technol. 56 (2019) 541.

A. Saputra, D. Swantomo, T. Ariyanto et al., Water Air Soil Pollut. 230 (2019) 213.

S. Porrang, N. Rahemi, S. Davaran et al., J. Taiwan Inst. Chem. Eng. 123 (2021) 47.

F. Kleitz, S. H. Choi and R. Ryoo, Chem. Commun. 17 (2003) 2136.

Y. Guo, M. Xia, K. Shao et al., Phys. Chem. Chem. Phys. 24 (2022) 17163.

M. Chaudhary, L. Singh, P. Rekha et al., Chem. Eng. J. 378 (2019) 122236.

A. Najah, D. Boivin, C. Noël et al., Mater. Chem. Phys. 290 (2022) 126629.

A. A. Hussain, S. Nazir, R. Irshad et al., Mater. Res. Bull. 133 (2021) 111059.

S. M. Hafezian, P. Biparva, A. Bekhradnia et al., Adv. Powder Technol. 32 (2021) 779.

M. Barczak, New J. Chem. 42 (2018) 4182.

F. F. Chen, Introduction to plasma physics, Springer Science & Business Media, New York (2012) 4.

G. Kongprawes, D. Wongsawaeng, P. Hosemann et al., Int. J. Energy Res. 45 (2021) 4519.

K. Puprasit, D. Wongsawaeng, K. Ngaosuwan et al., Innovative Food Sci. Emerg. Technol. 66 (2020) 102511.

Y. Todorova, E. Benova, P. Marinova et al., Processes 10 (2022) 554.

Z. Ye, L. Zhao, A. Nikiforov et al., Adv. Colloid Interface Sci. 308 (2022) 102755.

J. He, X. Wen, L. Wu et al., TrAC, Trends Anal. Chem. 156 (2022) 116715.

H. Zeghioud, P. Nguyen-Tri, L. Khezami et al., J. Water Process Eng. 38 (2020) 101664.

D. Ghernaout and N. Elboughdiri, Open Access Lib. J. 7 (2020) 1.

X. Ren, D. Shao, G. Zhao et al., Plasma Processes Polym. 8 (2011) 589.

L. Wu, Y. Cai, S. Wang et al., Int. J. Hydrogen Energy 46 (2021) 2432.

Y. Sun, S. Lu, X. Wang et al., Environ. Sci. Technol. 51 (2017) 12274.

N. S. Pamungkas, D. Wongsawaeng, D. Swantomo et al., Eng. J. 27 (2023) 45.

S. I. Hosseini, S. Mohsenimehr, J. Hadian et al., Phys. Plasma. 25 (2018) 013525.

S. Banafti, M. Jahanshahi, M. Peyravi et al., Microporous Mesoporous Mater. 299 (2020) 110107.

M. E. Adrover, M. Pedernera, M. Bonne et al., Saudi Pharm. J. 28 (2020) 15.

S. Manimaran, K. Subramanian, R. Tschentscher et al., J. Porous Mater. 29 (2022) 357.

K. Li, G. Liu, C. Wang et al., Catal. Commun. 144 (2020) 106093.

A. M. Basso, B. P. Nicola, K. Bernardo-Gusmao et al., Appl. Sci. 10 (2020) 970.

J. P. Ruelas-Leyva, L. F. Maldonado-Garcia, A. Talavera-Lopez et al., Catal. 11 (2021) 128.

L. Liang, J. Li, J. Zeng et al., Bioresour. 11 (2016) 6185.

S. Duan, X. Xu, X. Liu et al., J. Colloid Interface Sci. 513 (2018) 92.

Y. Wang, Z. Gu, J. Yang et al., Appl. Surf. Sci. 320 (2014) 10.

G. Tian, J. Geng, Y. Jin et al., J. Hazard. Mater. 190 (2011) 442.

J. Kim, C. Tsouris, R. T. Mayes et al., Sep. Sci. Technol. 48 (2013) 367.

Y. Tian, Y. Wang, L. Liu et al., J. Mol. Liq. 372 (2023) 121171.

W. Wongjaikham, D. Wongsawaeng, K. Ngaosuwan et al., Eng. J. 27 (2023) 1.

Y. Zhao, X. Hu, C. Shi et al., Constr. Build. Mater. 295 (2021) 123602.

Z. Huang, H. Dong, N. Yang et al., ACS Appl. Mater. Interfaces 12 (2020) 16959.

H. Yang, X. Liu, M. Hao et al., Adv. Mater. 33 (2021) 2106621.

A. I. W. S. Ramadani, N. S. Pamungkas, N. A. Putrisetya et al., Atom Indones. 46 (2020) 11.




DOI: https://doi.org/10.55981/aij.2024.1301



Copyright (c) 2024 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.