Neutronic Design Modification of Passive Compact-Molten Salt Reactor

R. A. P. Dwijayanto, A. W. Harto

Abstract


Passive compact molten salt reactor (PCMSR) is a design concept of a molten salt reactor (MSR) currently under development in Universitas Gadjah Mada, Indonesia. It is designed as a thermal breeder reactor using thorium fuel cycle. However, our previous study shows that the original PCMSR design was incorrectly modelled, primarily overestimating its thorium breeding capability. To improve PCMSR neutronic design, we modified the core configuration by the addition of radial fuel channel layers previously nonexistent in original PCMSR core design in various configurations. Neutronic parameters of modified PCMSR geometries in the beginning of life (BOL) were simulated using MCNP6.2 radiation transport code with ENDF/B-VII.0 library. All variations of fuel layer addition show improvement in both temperature coefficient of reactivity (TCR) and breeding ratio (BR), with TCR values became more negative and BR values are larger than unity, ensuring proper breeding capability. Configuration Inner Core-Outer Blanket (IC-OB) achieves the largest BR and lowest doubling time (DT), whilst its TCR is an improvement from the original design. Therefore, IC-OB fuel layer configuration can be applied to redesign the original PCMSR and used in various design optimization scenarios.


Keywords


PCMSR; Temperature coefficient of reactivity; Breeding ratio; MCNP

Full Text:

PDF

References


J. Serp, M. Allibert, O. Beneš et al., Prog. Nucl. Energy 77 (2014) 308.

J. Křepel, B. Hombourger, C. Fiorina et al., Ann. Nucl. Energy 64 (2014) 380.

D. LeBlanc, Nucl. Eng. Des. 240 (2010) 1644.

E. S. Bettis, R. C. Robertson, Nucl. Applications Technol. 8 (1970) 190.

R. C. Robertson, Conceptual Design Study of A Single-Fluid Molten Salt Breeder Reactor (1971).

J. Park, Y. Jeong, H. C. Lee et al., Int. J. Energy Res. 39 (2015) 1673.

C. Y. Zou, X. Z. Cai, D. Z. Jiang et al., Nucl. Eng. Des. 281 (2015) 114.

B. Hombourger, J. Křepel, A. Pautz, Ann. Nucl. Energy 144 (2020) 107504.

S. Q. Jaradat, A. B. Alajo, Nucl. Eng. Des. 314 (2017) 251.

E. D. Greaves, K. Furukawa, L. Sajo-Bohus et al., AIP Conf. Proc. 1423 (2012) 453.

K. Furukawa, L. Berrin Erbay, A. Aykol, Energy Convers. Manag. 63 (2012) 51.

K. Furukawa, K. Arakawa, L.B. Erbay et al., Energy Convers. Manag. 49 (2008) 1832.

C. Yu, X. Li, X. Cai et al., Ann. Nucl. Energy 85 (2015) 597.

C. Yu, X. Li, X. Cai et al., Ann. Nucl. Energy 99 (2017) 335.

Y. Peng, G. Zhu, Y. Zou et al., Int. J. Energy Res. (2020) 1.

X. X. Li, X. Z. Cai, D. Z. Jiang et al., Prog. Nucl. Energy 78 (2015) 285.

G. C. Li, P. Cong, C. G. Yu et al., Prog. Nucl. Energy 108 (2018) 144.

K. F. Ma, C. G. Yu, X. Z. Cai et al., Nucl. Sci. Tech. 31 (2020) 1.

A. W. Harto, AIP Conf. Proc. 1448 (2012) 82.

A. W. Harto, ARPN J. Eng. Appl. Sci. 11 (2016) 3993.

A. W. Harto, Indones. J. Phys. Nucl. Appl. 3 (2018) 7.

A. W. Harto, Int. J. Nucl. Energy Sci. Technol. 9 (2015) 224.

R. A. P. Dwijayanto, M. R. Oktavian, M.Y.A. Putra et al., A.W. Harto, Atom Indones. 47 (2021) 191.

N. M. K. Putri, B. JS and S. Aritonang, Int. J. Educ. Soc. Sci. Res. 5 (2022) 235.

T. M. Sembiring, J. Susilo and S. Pinem, J. Phys. Conf. Ser. 962 (2018) 012030.

M. H. du Toit and V. V. Naicker, Nucl. Eng. Des. 337 (2018) 394.

Zuhair, Suwoto, T. Setiadipura et al., Nukleonika 64 (2019) 131.

Zuhair, R. A. P. Dwijayanto, Suwoto et al., Kuwait J. Sci. 48 (2021) 1.

A. Wojciechowski, Prog. Nucl. Energy 106 (2018) 204.

B. Passons, P. Tsvetkov, Ann. Nucl. Energy 165 (2022) 108688.

Y. Jeong, J. Park, H. C. Lee et al., J. Nucl. Sci. Technol. 53 (2016) 529.

C. A. M. da Silva, A. L. Vieira, I. R. Magalhães et al., Braz. J. Radiat. Sci. 9 (2021) 1.

A. Khakim, F. Rhoma, A. Waluyo et al., AIP Conf. Proc. 2374 (2021) 020028.

F. R. L. Manik, Suharyana, F. Anwar et al., J. Phys. Conf. Ser. 1912 (2021) 012010.

A. Khakim, F. R. Firmanda, Y. Pramono et al., Atom Indones. 48 (2022) 1.

J. P. Carter and R. A. Borrelli, Nucl. Eng. Des. 365 (2020) 110718.

T. Fei, B. Feng and F. Heidet, Ann. Nucl. Energy 140 (2020) 107099.

S. Zhou, W. S. Yang, T. Park et al., Ann. Nucl. Energy 114 (2018) 369.

J. Shi and M. Fratoni, EPJ Web Conf. 247 (2021) 06040.

D. Moser, A. Wheeler and O. Chvála, Ann. Nucl. Energy 110 (2017) 1.

J. R. Lamarsh, Introduction to Nuclear Reactor Theory, Addison-Wesley Publishing, Boston (1966).

Zuhair, Suwoto, T. Setiadipura et al., Acta Polytech. 60 (2020) 175.

D. Hartanto, A. Alshamsi, A. Alsuwaidi et al., Atom Indones. 46 (2020) 177.

L. Mathieu, D. Heuer, R. Brissot et al., C. Garzenne Prog. Nucl. Energy 48 (2006) 664.

G. Zhu, Y. Zou, R. Yan et al., Int. J. Energy Res. 43 (2019) 577.

A. Rykhlevskii, J. W. Bae and K. D. Huff, Ann. Nucl. Energy 128 (2019) 366.

O. Ashraf, A. Rykhlevskii, G. V. Tikhomirov et al., Ann. Nucl. Energy 137 (2020) 107115.

J. Wu, J. Chen, X. Kang et al., Ann. Nucl. Energy 132 (2019) 391.




DOI: https://doi.org/10.55981/aij.2024.1308



Copyright (c) 2024 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.