Thermal Properties of Alpha Decay in Magnetic Field Medium

P. O. Nwabuzor, A. T. Ngiangia, F. J. George

Abstract


An analytical study of alpha decay in the presence of an imposed magnetic field and some of its thermodynamic properties was considered. The study used the JWKB method to determine the allowed energy eigenvalues and mean lifetime of the decay process with the understanding that the two expressions will enable us to determine the impact of the imposed magnetic field and the select thermodynamic properties. The study reveals that the solution admits a discrete energy spectrum and the radial wave function decreases exponentially as the imposed magnetic field decreases and is square integrable with zero point energy and the presence of the imposed magnetic field, enhanced the decay rate of the particles as well as partially removed the degeneracy of the process. The four thermodynamic properties considered as shown in the graphs plotted also laid credence by enhancing the entropy and the Helmholtz free energy, while the internal energy and the specific heat at constant volume of the decay process, depreciated as the magnetic field increases as well as attainment of saturation point. Generally, the shape of the wave function plot confirmed the radioactive decay curve.

Keywords


Alpha decay; Magnetic field; Phase integral; Thermodynamic properties

Full Text:

PDF

References


C. Amsler, Nuclear and Particle Physics, IOP Publishing LTD, Bristol (2015) 4.

N. Wan, C. Xu and Z. Ren, Phys. Rev. C 92 (2015) 024301.

R. McPatterson, Quantum Physics for Beginners, Independently Published (2022) 64.

A. Berera and L. Debbio, Quantum Mechanics, Cambridge University Press, Cambridge (2021) 341.

C. Grupen, Introduction to Radiation Protection: Practical Knowledge for Handling Radioactive Sources, Springer, Siegen (2010) 12.

C. T. Rogers, Pure Appl. Chem. 81 (2009) 19.

P. Filip, J. Phys. Conf. Ser. 636 (2015) 012013.

G. J. Rhampho, A. N. Ikot, C. O. Edet et al., Mol. Phys. 119 (2020) 1.

A. T. Ngiangia, O. Amadi and T. W. Jim-Lawson, Appl. J. Phys. Sci. 5 (2023) 17.

S. M. Ikhdair, B. J. Falaye and M. Hamzavi, Ann. Phys. 353 (2015) 282.

G. J. Ni and S. Q. Chen, Advanced Quantum Mechanics, Rinton Press, New Jersey (2002) 312.

A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4th ed., Springer Science+Business Media Dordrecht, Berlin (2002) 371.

D. J. Griffiths and D. F. Schroeter, Introduction to quantum Mechanics, 3rd ed., Cambridge University Press, Cambridge (2018) 79.

A. A. Abdulla, Nuclear Physics, Xlibris US, Bloomington (2015) 87.

A. T. Ngiangia, M. A. Orukari and F. Jim-George, Asian Res. J. Math. 10 (2018) 1.

A. Palffy and S. V. Poprelzhenko, Phys. Rev. Lett. 124 (2020) 212505.

S. V. Stovbun, A. M. Zanin, A. A. Skoblin et al., Sci. Rep. 10 (2020) 1.

P. Volpe, Int. J. Geosci. 5 (2014) 1149.

S. Tofani, Electromagn. Biol. Med. 41 (2022) 293.

M. Salimi, S. Fathizadeh and S. Behnia, Phys. Scr. 97 (2022) 055005.

C. Suresh, A Textbook of Statistical Mechanics (hb), CBS Publishers and Distributors, New Delhi (2008) 41.

A. N. Ikot, B. C. Lutfuoglu, M. I. Ngwueke et al., Eur. Phys. J. Plus 131 (2016) 419.

A. N. Ikot, E. O. Chukwuocha, M. C. Onyeaju et al., Pramana J. Phys. 90 (2018) 22.

U. S. Okorie, E. E. Ibekwe, A. N. Ikot et al., J. Korean Phys. Soc. 73 (2018) 1211.

A. N. Ikot, U. S. Okorie, R. Sever et al., Eur. Phys. J. Plus 134 (2019) 386.

J. Wang, C. S. Jia, C. J. Li et al., ACS Omega 4 (2019) 19193.

R. Khordad, C. O. Edet and A. N Ikot, Int. J. Mod. Phys. C 33 (2022) 2250106.

N. Froman and P. O. Froman, JWKB Approximations: Contributions to the Theory, North Holland Publishing Company, Amsterdam (1965) 41.

A. N. Ikot, C. N. Isonguyo, J. D. Olisa et al., Atom Indones. 40 (2014) 149.

A. N. Ikot, E. Maghsoodi, A. D. Antia et al., Arabian J. Sci. Eng. 40 (2015) 2063.

A. N. Ikot, S. Zarrinkamar, B. H. Yazarloo et al., Chin. Phys. B 23 (2014) 10036.

H. Hassanabadi, A. N. Ikot and S. Zarrinkamar, Acta Phys. Pol. A 126 (2014) 647.

D. J. Griffiths, Introduction to Quantum Mechanics, Pearson Prentice Hall, New Jersey (2005) 295.

R. Khordad and A. Ghanbari, J. Low Temp. Phys. 199 (2020) 1198.

S. V. Stovbun, D. V. Zlenko, A. A. Bukhvostov et al., Sci. Rep. 465 (2023) 1.




DOI: https://doi.org/10.55981/aij.2025.1316



Copyright (c) 2024 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.