Characterizing Photon Beam Properties of a TrueBeam STx Linear Accelerator: An Evaluation of Geant4/GATE Monte Carlo Simulation Tool Performance

P. H. Lam, P. T. Dung, P. Q. Trung

Abstract


Purpose: This study aims to investigate the characteristics of photon beams from TrueBeam STx, comparing flattening filter (FF) and flattening filter free (FFF) configurations between measurements and Monte Carlo simulation. Instruments and methods: The Geant4/GATE simulation toolkit was utilized to simulate percentage depth dose (PDD), off-axis distance profiles (profiles), dmax, TPR20/10, surface dose, field size, penumbra, flatness, and symmetry. Subsequently, these simulated results were compared with experimental measurements and evaluated using the gamma index method. Results: There was a good agreement between simulation and experimental measurement results in modeling the PDD and profile of photon beams. All gamma passing rate indices exceeded 97 %, 94 %, and 90 % with criteria of 3 % and 3 mm, 2 % and 2 mm, and 1 % and 1 mm, respectively. The calculated results of beam characteristics (dmax, TPR20/10, surface dose, field size, penumbra, flatness, and symmetry) were highly compatible with experimental measurements, with discrepancies less than 3 %, except for the surface dose of the 6MV FF photon beam, which had an error of 3.83 %. Conclusion: The Geant4/GATE simulation toolkit provided accurate results for simulating and investigating photon beam characteristics, aligning closely with experimental measurements.

Keywords


Photon beam; FF and FFF; Monte carlo simulation; Geant4/GATE

Full Text:

PDF

References


J. Gao and X. Liu, Int. J. Med. Phys. Clin. Eng. Radiat. Oncol. 8 (2019) 20.

K. R. Mani, M. A. Bhuiyan, M. S. Rahman et al., Pol. J. Med. Phys. Eng. 24 (2018) 79.

J. Seco and F. Verhaegen, Monte Carlo Techniques in Radiation Therapy, 2nd ed., CRC Press, Boca Raton (2022) 1.

R. Sapundani, R. Ekawati and K. M. Wibowo, Atom Indones. 47 (2021) 199.

B. T. Hung, T. T. Duong and B. N. Ha, Atom Indones. 49 (2023) 13.

D. Sarrut, M. Bardies, N. Boussion et al., Med. Phys. 41 (2014) 064301-1.

A. Mesbahi, P. Mehnati and A. Keshtkar, Iran. J. Radiat. Res. 5 (2007) 23.

M. Mohammed, E. Chakir, H. Boukhal et al., J. King Saud Univ. Sci. 29 (2017) 371.

E. Gündem and B. Dirican, Radiat. Phys. Chem. 184 (2021) 109491.

A. Sara, M. E. A. Krabch and M. Trihi, Oncol. Radiother. 16 (2022) 22.

D. A. Low, W. B. Harms, S. Mutic et al., Med. Phys. 25 (1998) 656.

F. Pönisch, U. Titt, O. N. Vassiliev et al., Med. Phys. 33 (2006) 1738.

A. Fogliata, R. Garcia, T. Knöös et al., Med. Phys. 39 (2012) 6455.

D. S. Followill, R. C. Tailor, V. M. Tello et al., Med. Phys. 25 (1998) 1202.

S. F. Kry, S. A. Smith, R. Weathers et al., J. Appl. Clin. Med. Phys. 13 (2012) 20.

O. N. Vassiliev, U. Titt, F. Pönisch et al., Phys. Med. Biol. 51 (2006) 1907.

E. B. Podgorsak, Radiation Oncology Physics: A Handbook for Teachers and Students, International Atomic Energy Agency, Vienna (2005) 1.

S. Kamizawa, Quality Assurance for Proton Beam Radiotherapy, in: Proton Beam Radiotherapy, Springer, Singapore (2020) 139.

IEC, Medical Electrical Equipment - Medical Electron Accelerators - Functional Performance Characteristics, 2nd ed., International Electro-technical Commission (IEC 60976), Geneva (2007) 1.

M. Joan, S. Saminathan, R. Manickam et al., J. Phys. Conf. Ser. 1248 (2019) 012037.

Y. Xiao, S. F. Kry, R. Popple et al., J. Appl. Clin. Med. Phys. 16 (2015) 12.

K. Muralidhar, B. K. Rout, K. Ramesh et al., J. Cancer Res. Ther. 11 (2015) 136.




DOI: https://doi.org/10.55981/aij.2024.1451



Copyright (c) 2024 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.