Brain Tumor Segmentation on MR and CT Images Using Fuzzy C-Means and Active Contour Methods

M. Hamid, A. Mu'ti, S. H. Intifadhah, E. R. Putri

Abstract


A brain tumor is a dangerous brain disease that can attack anyone. It can be described as the abnormal growth of cells in or around the brain, leading to impaired brain function. The first step in diagnosing a brain tumor is to perform an MRI (Magnetic Resonance Imaging) scan. The research aims to analyze the segmentation results of brain tumor MRI and CT (Computed Tomography) images using the Fuzzy C-Means and Active Contour methods. The evaluation is based on ROC parameters, including accuracy, dice score, precision, and sensitivity. The methodology involves analyzing data from secondary image sources, using MATLAB for the segmentation process, and evaluating the results of image segmentation by radiologists. Four ROC measurements were used for each method. The segmentation evaluation results for MRI images show that the Fuzzy C-Means method achieved a precision of 0.92; sensitivity of 0.64; dice score of 0.76; and accuracy of 0.61. The Active Contour method, on the other hand, obtained a precision of 0.97; a sensitivity of 0.99; a dice score of 0.98; and an accuracy of 0.96. For CT images, the Fuzzy C-Means method yielded a precision of 0.72; sensitivity of 0.98; dice score of 0.83; and accuracy of 0.71. The Active Contour method obtained a precision of 0.96; a sensitivity of 0.95; a dice score of 0.96; and an accuracy of 0.92. These results indicate that the Active Contour method, especially with MRI images, provides better segmentation performance. In conclusion, the segmentation results from the Active Contour method can be used as additional information for doctors in diagnosing the presence of tumors.

Keywords


Active contour; Brain tumor; Fuzzy C-Means; Segmentation

Full Text:

PDF

References


KEMENKES, National Guidelines for Medical Services Management of Brain Tumors, Regulation of the Head of Minister of Health of the Republic of Indonesia Number HK.01.07/MENKES/ 397/2020, KEMENKES (2020). (in Indonesian)

R. Vankdothu and M. A. Hameed, Meas.: Sens. 24 (2022) 100412.

G. Lavanya, K. L. Vinoci, D. Samvardani et al., J. Surv. Fish. Sci. 10 (2023) 219.

D. R. Sulistyaningrum, B. Setiyono and O. S. Hakim, AIP Conf. Proc. 2641 (2022) 040007.

V. Karanje and A. Gaikwad, Appl. Sci. Biotechnol. J. Adv. Res. 2 (2023) 14.

P. G. Reddy, T. Ramashri and K. L. Krishna, J. Sci. Res. 66 (2022) 227.

A. Fadjeri, A. Setyanto and M. P. Kurniawan, J. TIKomSiN. 8 (2020) 8. (in Indonesian)

D. Battalapalli, B. V. V. S. N. P. Rao, P. Yogeeswari et al., BMC Med. Imaging 22 (2022) 1.

G. S. Tandel, M. Biswas, O. G. Kakde et al., Cancer. 11 (2019) 111.

S. Normawati, Jurnal Riset Rumpun Ilmu Kedokteran 1 (2022) 168. (in Indonesian)

Z. Saga, A. Rahmouni, L. Belaroussi et al., Atom Indones. 50 (2024) 175.

L. Anggraeni and D. Nuramdiani, Jurnal Imejing Diagnostik (JImeD) 10 (2024) 37. (in Indonesian)

S. Wahyuni and L. Amalia, GALENICAL: Jurnal Kedokteran dan Kesehatan Malikussaleh 1 (2022) 88. (in Indonesian)

A. Kadir, Dasar Pengolahan Citra dengan Delphi, Andi Offset, Yogyakarta (2013) 1. (in Indonesian)

S. B. Dhumal and M. S. Tamboli, Int. J. Creative Res. Thouhts 10 (2022) 823.

S. A. Hussein and Q. A. Mosa, J. Al-Qadisiyah for Comput. Sci. Math. 14 (2022) 82.

B. P. Vikraman and J. Afthab, J. Auton. Intell. 6 (2023) 1.

E. R. Putri, A. V. Nasrullah and A. E. Fahrudin, Int. J. Electr. Comput. Eng. 5 (2015) 304.

E. Korotina, Exploring and Comparing Data Selection Methods in the Pre-Processing Step of a Deep Learning Framework for Automatic Tumor Segmentation on PET-CT Images, Thesis, University Groningen (2022).

W. El-Shafai, A. A. Mahmoud, E. S. M. El-Rabaie et al., Comput. Mater. Continua 73 (2022) 3455.

S. K. Veeramalla, V. Hindumathi, T. V. Reddy et al., J. Mech. Med. Biol. 23 (2023) 2340002.

K. Rezaee, M. K. N. Ahmadi and M. S. Anari, Majlesi J. Electr. Eng. 16 (2022) 21.

Y. Chen, P. Ge, G. Wang et al., Intell. Rob. 3 (2023) 23.

C. J. J. Sheela and G. Suganthi, J. King Saud Univ. Comput. Inf. Sci. 34 (2022) 557.

J. S. U. Rahman and S. K. Selvaperumal, Indones. J. Electr. Eng. Comput. Sci. 29 (2023) 270.

A. Bal, M. Banerjee, A. Chakrabarti et al., J. King Saud Univ. Comput. Inf. Sci. Sci. 34 (2022) 115.

R. Habib, A. Y. Suhan, A. Vadher et al., Clustering of MRI in Brain Images Using Fuzzy C Means Algorithm, in: Machine Learning and Autonomous Systems. Smart Innovation, Systems and Technologies vol. 269, Springer Nature, Singapore (2022) 437.

F. Basyid and K. Adi, Youngster Phys. J. 3 (2014) 209.

G. Naik, A. Abhyankar, B. Garware et al., Intern. J. Comput. Vision Image Process. 12 (2022) 1.

K. Fitriya and Hakim, Jurnal Explore IT. 11 (2019) 29. (in Indonesian)

V. Oreiller, V. Andrearczyk, M. Jreige et al. Med. Image Anal. 77 (2022) 8415.

E. R. Putri, A. Zarkasi, P. Prajitno et al., IAES Int. J. Artif. Intell. 12 (2023) 171.

A. R Raju, S. Pabboju and R. R. Rao, Sens. Rev. 39 (2019) 473.

H. S. Bhadauria, A. Singh and M. L. Dewal, Comput. Electr. Eng. 39 (2013) 1527.

N. Fadillah and C. R. Gunawan, Jurnal Riset Komputer (JURIKOM) 6 (2019) 126. (in Indonesian)

I. Aboussaleh, J. Riffi, A. M. Mahaz et al., J. Imaging 7 (2021) 269.




DOI: https://doi.org/10.55981/aij.2025.1466



Copyright (c) 2025 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.