Radiation Dose Calculation Analysis During The Dismantling of Disused Sealed Radioactive Sources at CNESTEN: MCNP Code Simulation Results

B. El Azzaoui, O. Kabach, R. Outayad, M. Y. Messous, K. Bergaoui, K. Nbaoui, J. Kadiri, E. Chakir, E. Alibrahmi, A. Kharchaf

Abstract


Disused Sealed Radioactive Sources (DSRS) present significant risks of radiation exposure and environmental contamination during dismantling. Despite their sealed nature, DSRS can emit ionizing radiation, necessitating careful management to mitigate health risks. This article presents the MCNP simulation results of dosimetric operational quantities, namely Hp(3), Hp(10), and H(0.07), for hands and feet. This study focuses on a 60Co source, due to its high radiation energy levels and widespread use in various socioeconomic sectors. The assessment of radiation exposure levels enabled the improvement of occupational radiation protection measures related to critical areas and steps in the dismantling process. According to the obtained results with the 60Co source at its initial activity, and considering the maximum task duration, the dismantling process contributes to approximately 72.35 % of the daily dose limit of 80 µSv for worker category A, for the whole body. Therefore, these findings can contribute to a better understanding of radiation exposure risks and confirm compliance with regulatory requirements.

Keywords


DSRSs; Dismantling; Radiological safety; MCNP; 60Co

Full Text:

PDF

References


IAEA, Management of disused sealed radioactive sources, International Atomic Energy Agency, Vienna (2014).

J. C. Benitez-Navarro, J. Canizares, E. Demireva et al., Current Approaches on the Management of Disused Sealed Sources in Bulgaria, in: BULATOM International Nuclear Forum: The Future of Nuclear Energy on the Balkans: Security of Energy Supply and Nuclear New Builds, Bulgaria (2005) 1.

IAEA, Governmental, Legal and Regulatory Framework for Safety, International Atomic Energy Agency, Vienna (2016).

IAEA, Categorization of Radioactive Sources IAEA Safety Standards Series No. RS-G-1.9, International Atomic Energy Agency, Vienna (2005) 70.

K. Raj, K. K. Prasad and N. K. Bansal, Nucl. Eng. Des. 236 (2006) 914.

IAEA, Policies and Strategies for Radioactive Waste Management, International Atomic Energy Agency, Vienna (2009) 68.

D. Telleria and G. Proehl, Atom Indones. 39 (2014) 101.

IAEA, Predisposal Management of Radioactive Waste, General Safety Requirements Part 5, International Atomic Energy Agency, Vienna (2009).

IAEA, Guidance on the Management of Disused Radioactive Sources, Guid. Manag. Disused Radioactive Sources, International Atomic Energy Agency, Vienna (2018) 1.

O. Kabach, A. Chetaine and A. Benchrif, Int. J. Nucl. Secur. 6 (2020) 1.

S. Uras, C. Zovini, A. Paratore et al., State of the Art in Packaging, Storage, and Monitoring of Cemented Wastes, Roma (2021) 1.

A. N. Yusupov, P. A. Mikhailov, V. D. Kizin et al., Yad. Energ. (2023) 95.

IAEA, The Safety Case and Safety Assessment for the Predisposal Management of Radioactive Waste, No. GSG-3, International Atomic Energy Agency, Vienna (2013).

B. El Azzaoui, H. Hamdane, R. Outayad et al., J. Mater. Environ. Sci. 14 (2022) 1425.

IAEA, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, International Atomic Energy Agency, Vienna (2014).

A. Putri, R. Zurma, R. Munir et al., Atom Indones. 49 (2023) 185.

A. Taopik, L. E. Lubis, D. S. K. Sihono Atom Indones. 49 (2023) 169.

Muslim, F. I. Maulana, H. Suseno et al., Atom Indones. 48 (2022) 231.

Y. O. Salem, Etude expérimentale et modélisation Monte Carlo des grandeurs opérationnelles en métrologie des rayonnements ionisants : application à la dosimétrie neutrons par radiophotoluminescence, Université de Strasbourg, (2014).

ICRU, Appendix A. Values of Conversion Coefficients, Journal of the ICRU. 20 (2020) 46.

B. El Azzaoui, M. Y. Messous, A. Didi et al., Int. J. Power Energy Convers. 14 (2023) 376.

C. J. Werner, MCNP User’s Manual, Code Version 6.2, Report la-UR-17-29981, Los Alamos National Laboratory (2017).

R. J. McConn Jr, C. J. Gesh, R. T. Pagh et al., Compendium of Material Composition Data for Radiation Transport Modeling. PNNL-15870 Rev. 1 (2011).

M. J. Berger et al., XCOM: Photon Cross Sections Database, NIST, PML, Radiation Physics Division (2010).

AMSSNuR, La protection de la population, des travailleurs et de l’environnement contre les dangers résultant de l’exposition aux rayonnements ionisants, décret n°2.23.151, Morocco (2023).

P. Bannier, H. Jin and P. M. Goodrum, J. Inf. Technol. Constr. 21 (2016) 292.

M. N. AL-Suhbani, N. E. H. Baghous, S. Serag, et al., Atom Indones. 1 (2024) 1.

M. T. Saidin, A. A. Rahman, H. H. Harun et al., Atom Indones. 47 (2021) 213.

ICRP, ICRP Publication 110, Adult Reference Computational Phantoms, International Commission on Radiological Protection (2009).

J. P. Seuntjens, W. Strydom and K. R. Shortt, Chapter 2, Dosimetric Principles, Quantities and Units, International Atomic Energy Agency (2005).

R. Behrens, J. Radiol. Prot. 32 (2012) 455.




DOI: https://doi.org/10.55981/aij.2024.1469



Copyright (c) 2024 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.