Radial Sensitivity of the Nuclear Shell Structure at N=92

R. R. Swain, A. Anupam, P. Mohanty, K. K. Jena, S. K. Agarwalla, B. B. Sahu

Abstract


The nuclear ground-state properties of Sm isotopes are calculated and analyzed using an improved mass formula. The asymmetric energy term is consistently observed, separated into a volume and surface component. While distinctive signatures for certain isotopes remain elusive, the results show reasonable agreement with experimental data and well-established theoretical models such as the Relativistic-Continuum-Hartree-Bogoliubov (RCHB) and the Finite Range Droplet Model (FRDM). By utilizing a root-mean-square (rms) charge radius formula that incorporates both shell and deformation effects, the study provides new insights into the anomalous shifts observed in magic isotopes (N=82, N=126), as well as in N=92, 136, and 144 within the isotopic series of the "Sm" element.

Keywords


Improved mass formula; rms charge radius; Shell structures; Deformation

Full Text:

PDF

References


A. I. Nabeel, Tumor Biol. 42 (2020) 1.

O. Moreira, Ann. Nucl. Energy 83 (2015) 87.

Y. Cheng, H. Nan, Q. Li et al., ACS Sustain. Chem. Eng. 8 (2020) 13908.

P. Moradi, T. Kikhavani and Y. A. Tyula, Sci. Rep. 13 (2023) 5902.

H. A. Bethe, Phys. Rev. 50 (1936) 332.

P. Möller, A. J. Sierk, T. Ichikawa et al., At. Data Nucl. Data Tables 109-110 (2016) 1.

J. Geng and W. H. Long, Phys. Rev. C 105 (2022) 034329.

Y. el Bassem and M. Oulne, Nucl. Phys. A 957 (2017) 22.

N. N. Ma, H. F. Zhang, X. J. Bao et al., J. Phys. G: Nucl. Part. Phys. 42 (2015) 095107.

M. Liu, Y. Gao and N. Wang, Chin. Phys. C 41 (2017) 114101.

C. Qi, J. Phys. G: Nucl. Part. Phys. 42 (2015) 045104.

L. Spanier and S. A. E. Johansson, At. Data Nucl. Data Tables 39 (1988) 259.

N. Wang, M. Liu, X. Wu et al., Phys. Lett. B 734 (2014) 215.

A. S. Umar, C. Simenel and K. Godbey, Phys. Rev. C 104 (2021) 034619.

R. An, S. S. Zhang, L. S. Geng et al., Chin. Phys. C 46 (2022) 054101.

R. Shou, X. Yin, C. Ma et al., Phys. Rev. C 106 (2022) L061304.

T. Naito, X. Roca-Maza, G. Colò et al., Phys. Rev. C 106 (2022) L061306.

R. An, X. Jiang, N. Tang et al., Phys. Rev. C 109 (2024) 064302.

J. Q. Ma and Z. H. Zhang, Chin. Phys. C 46 (2022) 074105.

N. Wang and T. Li, Phys. Rev. C 88 (2013) 011301.

S. A. E. Johansson, Ark. Fys. 22 (1962) 414.

S. Wang, Q. Zhao, P. Ring et al., Phys. Rev. C 103 (2021) 054319.

W. H. Long, J. Geng, J. Liu et al., Commun. Theor. Phys. 74 (2022) 097301.

H. G. Ganev, Eur. Phys. J. A 57 (2021) 181.

NuDat, Binding Energy per Nucleon of Sm Isotopes, https://www.nndc.bnl.gov/nudat/. Retrieved in January (2024).

X. W. Xia, Y. Lim, P. W. Zhao et al., At. Data Nucl. Data Tables 121-122 (2018) 1.

P. Möller, M. R. Mumpower, T. Kawano et al., At. Data Nucl. Data Tables 125 (2019) 1.

R. R. Swain, B. B. Sahu, P. K. Moharana et al., Int. J. Mod. Phys. E 28 (2019) 1950041.

B. A. Brown, J. Phys. Conf. Ser. 580 (2015) 012016.

Á. Koszorús, X. F. Yang, W. G. Jiang et al., Nat. Phys. 17 (2021) 439.

I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99 (2013) 69.

M. Das, K. C. Naik, N. Biswal et al., Atom Indones. 48 (2022) 115.




DOI: https://doi.org/10.55981/aij.2025.1491



Copyright (c) 2025 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.