Preliminary Neutronic Studies on RSG-GAS Fuel Element with 4.8 grU/cc and Burnable Poison Wire for Reactivity Reduction

W. Luthfi, T. Setiadipura, Z. Su’ud

Abstract


High-density fuel can increase the operating cycle of a nuclear reactor. The G.A. Siwabessy Multipurpose Reactor (RSG-GAS) is a research reactor owned by Indonesia that currently uses 19.75 % enriched uranium silicide fuel (U3Si2-Al) with a uranium density of 2.965 grU/cc. Previous studies have shown that high-density fuel, 4.8 grU/cc, can be used in the RSG-GAS core to extend the operating cycle. Previous studies related to high-density fuel conversion scenarios included a temporary conversion process to a density of 3.55 grU/cc before being increased to 4.8 grU/cc. However, the previous conversion process requires the addition of control rods to suppress the excess reactivity of the RSG-GAS. The current study focuses on determining the configuration of burnable poison wire for the standard fuel element of RSG-GAS (FE) made of cadmium and hafnium to suppress the reactivity (k-inf) of the 4.8 grU/cc fuel element so it could have an initial reactivity closer to the 2.965 grU/cc fuel. 5 pairs of 0.4 mm diameter Cd-wire coated with 0.1 mm AlMg2 cladding can suppress the reactivity of the fuel assembly, while 7 pairs of 0.8 mm diameter Hf-wire without cladding could suppress reactivity longer. The temperature coefficient of reactivity for the moderator temperature (MTC) and fuel temperature (FTC) also becomes more negative in high-density FE RSG-GAS while the amount of Pu-239 produced increases in high-density fuel element.

Keywords


RSG-GAS; 4.8 grU/cc; Burnable poison wire; Temperature coefficient of reactivity; SRAC2006; Openmc

Full Text:

PDF

References


P. H. Liem and T. M. Sembiring, Nucl. Eng. Des. 240 (2010) 1433.

S. Pinem, D. Hartanto, P. H. Liem et al., J. Nucl. Eng. Radiat. Sci. 9 (2023) 1.

J. R. Lamarsh, Introduction to Nuclear Reactor Theory, Addison-Wesley Publishing Company, New York (1966) 1.

J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis, John Wiley & Sons Inc., New York (1976) 1.

T. M. Sembiring, Tukiran, S. Pinem et al., Atom Indones. 27 (2001) 95.

International Atomic Energy Agency (IAEA), Research Reactor Core Conversion from the Use of Highly Enriched Uranium to the Use of Low Enriched Uranium Fuels Guidebook, IAEA-TECDOC-233, IAEA, Vienna (1980) 1.

International Atomic Energy Agency (IAEA), Research Reactor Core Conversion Guide Book, Volume 1: Summary, IAEA-TECDOC-643, IAEA, Vienna (1992) 1.

B. Arbie, R. Nabbi, Prayoto et al., Conversion Study from Oxide to Silicide Fuel for the Indonesian 30 MW Multipurpose Reactor G.A. Siwabessy, Proceedings of the 18th International Meeting on Reduced Enrichment for Research and Test Reactor (1995) 1.

L. Suparlina, Tri Dasa Mega 15 (2013) 137. (in Indonesian)

J. Susilo and L. Suparlina, Tri Dasa Mega 11 (2009) 12. (in Indonesian)

M. Naka, M. Miyazawa, H. Sato et al., JAERI Conf. 99-006 (1994) 177.

A. B. Ginting, Yanlinastuti, Boybul et al., Nucl. Eng. Des. 425 (2024) 113327.

K. Okumura, T. Kugo, K. Kaneko et al., SRAC2006: A Comprehensive Neutronics Calculation Code System, JAEA-Data/Code 2007-004, JAEA, Tokai-mura (2007) 44.

P. K. Romano, N. E. Horelik, B. R. Herman et al., Ann. Nucl. Energy 82 (2015) 90.

P. K. Romano, C. J. Josey, A. E. Johnson et al., Ann. Nucl. Energy 152 (2021) 107989.

National Institute of Standards and Technology (NIST), NIST Standard Reference Database Number 69. https://webbook.nist.gov/chemistry/. Retrieved in July (2024).

Japan Atomic Energy Research Institute (JAERI), Annual Report of JMTR FY1996, JAERI-Review 98-004, JAERI, Tokai-mura (1997) 1.

Japan Atomic Energy Agency (JAEA), Nuclear Data Center. https://wwwndc.jaea.go.jp/NuC/. Retrieved in July (2024).




DOI: https://doi.org/10.55981/aij.2025.1503



Copyright (c) 2025 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.